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Unit - I 

Solutions of Algebraic and Transcendental equations 

1.0 Introduction: 

 The limitations of analytical methods for the solution of equations have 

necessitated the use of iterative methods. An iterative method begins with an 

approximate value of the root which is generally obtained with the help of 

Intermediate value property of the equation. This initial approximation is then 

successively improved iteration by iteration and this process stops when the desired 

level of accuracy is achieved. The following methods are used to find the roots of the 

given equation. 

1. The Bisection Method 

2. The iteration Method 

3. The method of False Position 

4. The Newton – Raphson Method. 

 

 1.1 Properties of equation: 

(i) If f(a) and f(b) have opposite signs then one root of f(x) = 0 lies between a 

and b. 

(ii) Every equation of an odd degree has at least one real root whose sign is 

opposite to that of its last term. 

(iii) Every equation of an even degree with last term negative has at least a pair 

of real roots one positive and other negative. 

 

1.2 Bisection Method or Interval Halving Method or BOLZANO’s 

Method 

Suppose we have an equation of the form 𝑓 𝑥 = 0 whose solution in the 

range (a,b). We also assume that 𝑓(𝑥) is continuous and it can be algebraic or 

transcendental. If 𝑓(𝑎) and 𝑓(𝑏) are of opposite signs, atleast one real root between 

a and b should exist. We assume that root to be 𝑥0 =
𝑎+𝑏

2
. Now find the sign of 𝑓 𝑥0 . 

If 𝑓 𝑥0  is negative then the root lies between a and 𝑥0. If 𝑓 𝑥0  is positive then the 

root lies between 𝑥0 and b. In this way taking the midpoint of the range as the 
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approximate root, we form a sequence of approximate roots 𝑥0, 𝑥1, 𝑥2 , … whose limit 

of convergence is the exact root. 

 

Example 1. Find the positive root of 𝑥3 − 𝑥 = 1 correct to four decimal places by 

bisection method. 

Solution: 

Let 𝑓 𝑥 = 𝑥3 − 𝑥 − 1  

Here 𝑓 0 = −1 = −𝑣𝑒, 𝑓 1 = −𝑣𝑒 , 𝑓 2 = 5 = +𝑣𝑒 

Hence the root lies between 1 and 2. Let 𝐼 = [1,2] 

Let 𝑥0 =
1+2

2
= 1.5 

Now 𝑓 𝑥0 = 𝑓(1.5) = +𝑣𝑒 and 𝑓 1 = −𝑣𝑒 

Hence the root lies between 1 and 1.5. 

Let 𝑥1 =
1+1.5

2
= 1.25 

Now 𝑓 𝑥1 = 𝑓 1.25 = −𝑣𝑒 and 𝑓 1.5 = +𝑣𝑒 

Hence the root lies between 1.25 and 1.5. 

Let 𝑥2 =
1.25+1.5

2
= 1.375 

Now 𝑓 𝑥2 = 𝑓 1.375 = +𝑣𝑒  

Hence the root lies between 1.25 and 1.375. 

Let 𝑥3 =
1.25+1.375

2
= 1.3125 

Now 𝑓 𝑥3 = 𝑓 1.3125 = −𝑣𝑒  

Hence the root lies between 1.3125 and 1.375. 

Let 𝑥4 =
1.3125+1.375

2
= 1.3438 

Now 𝑓 𝑥4 = 𝑓 1.3438 = +𝑣𝑒  

Hence the root lies between 1.3125 and 1.3438. 

Let 𝑥5 =
1.3125+1.3438

2
= 1.3282 

Now 𝑓 𝑥5 = 𝑓 1.3282 = +𝑣𝑒  

Hence the root lies between 1.3125 and 1.3282. 

Let 𝑥6 =
1.3125+1.3282

2
= 1.3204 

Now 𝑓 𝑥6 = 𝑓 1.3204 = −𝑣𝑒  

Hence the root lies between 1.3204 and 1.3282. 

Let 𝑥7 =
1.3204+1.3282

2
= 1.3243 
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Now 𝑓 𝑥7 = 𝑓 1.3243 = −𝑣𝑒  

Hence the root lies between 1.3243 and 1.3282. 

Let 𝑥8 =
1.3243+1.3282

2
= 1.3263 

Now 𝑓 𝑥8 = 𝑓 1.3263 = +𝑣𝑒  

Hence the root lies between 1.3243 and 1.3263. 

Let 𝑥9 =
1.3243+1.3263

2
= 1.3253 

Now 𝑓 𝑥9 = 𝑓 1.3253 = +𝑣𝑒  

Hence the root lies between 1.3243 and 1.3253. 

Let 𝑥10 =
1.3243+1.3253

2
= 1.3248 

Now 𝑓 𝑥10 = 𝑓 1.3248 = +𝑣𝑒  

Hence the root lies between 1.3243 and 1.3248. 

Let 𝑥11 =
1.3243+1.3248

2
= 1.3246 

Now 𝑓 𝑥11 = 𝑓 1.3246 = −𝑣𝑒  

Hence the root lies between 1.3248 and 1.3246. 

Let 𝑥12 =
1.3248+1.3246

2
= 1.3246 

Therefore, the approximate root is 1.3246. 

 

Example 2. Find the root of 𝑥 − cos 𝑥 = 0 by bisection method. 

Solution: 

Let 𝑓 𝑥 = 𝑥 − cos 𝑥 

𝑓 0 = −𝑣𝑒, 𝑓 0.5 = −𝑣𝑒, 𝑓 1 = +𝑣𝑒 

Hence the root lies between 0.5 and 1. 

Let 𝑥0 =
0.5+1

2
= 0.75 

Now 𝑓 𝑥0 = 𝑓 0.75 = +𝑣𝑒  

Hence the root lies between 0.5 and 0.75. 

Let 𝑥1 =
0.5+0.75

2
= 0.625 

Now 𝑓 𝑥1 = 𝑓 0.625 = −𝑣𝑒  

Hence the root lies between 0.625 and 0.75. 

Let 𝑥2 =
0.625+0.75

2
= 0.6875 

Now 𝑓 𝑥2 = 𝑓 0.6875 = −𝑣𝑒  

Hence the root lies between 0.6875 and 0.75. 
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Let 𝑥3 =
0.6875+0.75

2
= 0.7188 

Now 𝑓 𝑥3 = 𝑓 0.7188 = −𝑣𝑒  

Hence the root lies between 0.7188 and 0.75. 

Let 𝑥4 =
0.7188+0.75

2
= 0.7344 

Now 𝑓 𝑥4 = 𝑓 0.7344 = −𝑣𝑒  

Hence the root lies between 0.7344 and 0.75. 

Let 𝑥5 =
0.7344+0.75

2
= 0.7422 

Now 𝑓 𝑥5 = 𝑓 0.7422 = +𝑣𝑒  

Hence the root lies between 0.7344 and 0.7422. 

Let 𝑥6 =
0.7344+0.7422

2
= 0.7383 

Now 𝑓 𝑥6 = 𝑓 0.7383 = −𝑣𝑒  

Hence the root lies between 0.7383 and 0.7422. 

Let 𝑥7 =
0.7383+0.7422

2
= 0.7402 

Now 𝑓 𝑥7 = 𝑓 0.7402 = +𝑣𝑒  

Hence the root lies between 0.7383 and 0.7402. 

Let 𝑥8 =
0.7383+0.7402

2
= 0.7393 

Now 𝑓 𝑥8 = 𝑓 0.7393 = +𝑣𝑒  

Hence the root lies between 0.7383 and 0.7393. 

Let 𝑥9 =
0.7383+0.7393

2
= 0.739 

Therefore, the approximate root is 0.739. (Correct to three decimal places) 

 

1.3 Fixed-point Iteration Method 

In open methods, we have to use a formula to predict the root, as an example 

for the fixed-point iteration method we can rearrange f(x) so that x is on the left-hand 

side of the equation: 

𝑥 = ∅(𝑥) 

This can be achieved by algebraic manipulation of by simply adding x to both sides 

of the original equation, example: 

  xxxx

x
xxx






)sin(0sin

3

1
013

2
2
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This is important since it will allow us to develop a formula to predict the new value 

for x as a function of an old value of x as 

𝑥𝑖+1 = ∅(𝑥𝑖). 

The order of convergence of this method is linear. 

 

Example 1: Use the iteration method to find a root of the equation x = ½ + sin x? 

Solution: 

Let f(x) = sin x – x + ½ 

  f(1) = sin 1 – 1 + ½ = 0.84 – 0.5 = +ve 

  f(2) = sin 2 – 2 + ½ = 0.9.9 – 1.5 = -ve. 

A root lies between 1 and 2. The given equation can be written as 

   x = sin x + ½ = ∅ 𝑥  

 ∅′(𝑥) =  cos 𝑥 < 1 𝑖𝑛 [1,2] 

Hence the iteration method can be applied. Let the approximation be x0 = 1. 

The successive approximation is as follows: 

x1= ∅ 𝑥0  = sin 1 + ½ = 0.8414 + 0.5 = 1.3414 

x2= ∅ 𝑥1  = sin (1.3414) + ½ = 0.9738 + 0.5 = 1.4738 

x3= ∅ 𝑥2  = sin (1.4738) + ½ = 0.9952 + 0.5 = 1.4952 

x4= ∅ 𝑥3  = sin (1.4952) + ½ = 0.9971 + 0.5 = 1.4971 

x5= ∅ 𝑥4  = sin (1.4971) + ½ = 0.9972 + 0.5 = 1.4972 

Since x4 and x5 are almost equal and the required root is 1.497. 

 

Example 2: Find the positive root of 3𝑥 −  1 + sin 𝑥 = 0 by iteration method. 

Solution: 

Let 𝑓 𝑥 = 3𝑥 −  1 + sin 𝑥 

𝑓 0 = −𝑣𝑒 𝑎𝑛𝑑 𝑓 1 = +𝑣𝑒 

The root lies between 0 and 1 

The given equation can be written as 𝑥 =
1

3
 1 + sin 𝑥 = ∅ 𝑥 , ∅′ 𝑥 =

cos 𝑥

6 1+sin 𝑥
 

In (0,1),  ∅′ 𝑥  < 1 for all x, so we can use iteration method. 

Take 𝑥0 = 0.4, 

𝑥1 =
1

3
 1 + sin(0.4) = 0.3929 
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𝑥2 =
1

3
 1 + sin(0.3929) = 0.3919 

𝑥3 =
1

3
 1 + sin(0.3919) = 0.3918 

𝑥4 =
1

3
 1 + sin(0.3918) = 0.3919 

𝑥4 =
1

3
 1 + sin(0.3919) = 0.3919 

Therefore the root is 0.3919. 

 

1.4 Regula Falsi method or the method of False position 

In the false position method we will find the root of the equation 𝑓 𝑥 = 0, 

Consider two initial approximate values 𝑥0 𝑎𝑛𝑑 𝑥1 near the required root so that 𝑓(𝑥0) 

and 𝑓(𝑥1) have different signs. This implies that a root lies between 𝑥0 𝑎𝑛𝑑 𝑥1. The 

curve 𝑓 𝑥  Crosses x-axis only once at the Point 𝑥2  lying between the points 

𝑥0 𝑎𝑛𝑑 𝑥1. Consider the point 𝐴 =  𝑥0 , 𝑓 𝑥0   𝑎𝑛𝑑 𝐵 =  𝑥1, 𝑓 𝑥1   on the graph and 

suppose they are connected by a straight line. Suppose this line cuts x-axis at 𝑥2. 

We calculate the value of 𝑓(𝑥2) at the point. If 𝑓(𝑥0) and 𝑓(𝑥2) are of  opposite signs, 

then the root lies between 𝑥0 𝑎𝑛𝑑 𝑥2 and value 𝑥1 is replaced by 𝑥2 otherwise the 

root lies between 𝑥2 and 𝑥1  and 

 

 

 

 

 

 

the value of 𝑥0 is replaced by 𝑥2. 

Another line is drawn by connecting the 

newly obtained pair of values. Again 

the point here cuts the x-axis is a closer 

approximation to the root. This process 

is repeated as many times as required 

to obtain the desired accuracy. It can 

be observed that the points 𝑥2 , 𝑥3, 𝑥4 , … 

obtained converge to the expected root 

of the equation 𝑓 𝑥 = 0. 

If 𝑥0 = 𝑎 𝑎𝑛𝑑 𝑥1 = 𝑏 then 𝑥1 =
𝑎𝑓 𝑏 −𝑏𝑓(𝑎)

𝑓 𝑏 −𝑓(𝑎)
 . The order of convergence of this method 

is 1.618. 
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Example 1: Solve for a positive root of 𝑥3 − 4𝑥 + 1 = 0 by Regula Falsi method. 

Solution: 

Let 𝑓 𝑥 = 𝑥3 − 4𝑥 + 1 

𝑓 1 = −2 = −𝑣𝑒 , 𝑓 0 = 1 = +𝑣𝑒  

Therefore a root lies between 0 and 1. 

Let a = 0 and b = 1 

𝑥1 =
𝑎𝑓 𝑏 −𝑏𝑓(𝑎)

𝑓 𝑏 −𝑓(𝑎)
= 0.3333  

𝑓 𝑥1 = 𝑓 0.3333 = −0.2963 = -ve 

Therefore the root lies between 0 and 0.3333 

Therefore 𝑥2 =
0 0.3333 −0.3333(1)

0.3333−1
= 0.2571 

Now 𝑓 𝑥2 = 𝑓 0.2571 = −0.0116 = -ve 

Therefore the root lies between 0 and 0.2571 

𝑥3 =
0∗𝑓 0.2571 −0.2574∗ 𝑓(0)

𝑓 0.2571 −𝑓(0)
= 0.2542  

Now 𝑓 𝑥3 = 𝑓 0.2542 = −0.0004 

Therefore the root lies between 0 and 0.2542 

𝑥4 =
0∗𝑓 0.2542 −0.2542∗ 𝑓(0)

𝑓 0.2542 −𝑓(0)
= 0.2541  

Now 𝑓 𝑥4 = 𝑓 0.2541 = −0.00001 

Therefore the root lies between 0 and 0.2541 

𝑥5 =
0∗𝑓 0.2541 −0.2541∗ 𝑓(0)

𝑓 0.2541 −𝑓(0)
= 0.2541  

Hence the root is 0.2541. 

 

Example 2: Find an approximate root of 𝑥 log10 𝑥 − 1.2 = 0 by method of False 

position. 

Solution: 

Let 𝑓 𝑥 = 𝑥 log10 𝑥 − 1.2 

 𝑓 2 = −0.5979 =  −𝑣𝑒  𝑎𝑛𝑑 𝑓 3 = 0.2314 = +𝑣𝑒  

Hence the root lies between 2 and 3. And let a=2 and b=3 

𝑥1 =
𝑎𝑓 𝑏 −𝑏𝑓(𝑎)

𝑓 𝑏 −𝑓(𝑎)
=

2𝑓 3 −3𝑓(2)

𝑓 3 −𝑓(2)
= 2.7210  

𝑓 𝑥1 = 𝑓 2.7210 = −0.0171 = -ve 

Hence the root lies between 2.7210 and 3 
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Therefore 𝑥2 =
2.7210∗𝑓 3 −3∗𝑓(2.7210)

𝑓 3 −𝑓(2.7210)
= 2.7402 

Now 𝑓 𝑥2 = 𝑓 2.7402 = −0.0004 = -ve 

Therefore the root lies between 2.7402 and 3 

𝑥3 =
2.7402∗𝑓 3 −3∗ 𝑓(2.7402 )

𝑓 3 −𝑓(2.7402)
= 2.7406  

Now 𝑓 𝑥3 = 𝑓 2.7406 = 0.00011 

Therefore the root lies between 2.7402 and 2.7406 

𝑥4 =
2.7402∗𝑓 2.7406 −2.7406∗ 𝑓(2.7402)

𝑓 2.7406 −𝑓(2.7402)
= 2.7405  

Now 𝑓 𝑥4 = 𝑓 2.7405 = 0.000001 

Hence the root is 2.7405. 

 

1.5 Newton – Raphson Method of Solving a Nonlinear Equation 

The Newton – Raphson method, or Newton Method, is a powerful technique 

for solving equations numerically. Like so much of the differential calculus, it is based 

on the simple idea of linear approximation. The Newton Method, properly used, 

usually homes in on a root with devastating efficiency. The Newton-Raphson method 

is based on the principle that if the initial guess of the root of 0)( xf  is at ix , then if 

one draws the tangent to the curve at )( ixf , the point 1ix  where the tangent 

crosses the x -axis is an improved estimate of the root. 

Using the definition of the slope of a function, at ixx   

  θ = xf i tan  

 

1

0





ii

i

xx

xf
 = , 

which gives 

 
 i

i
ii

xf

xf
 = xx


1        (1) 

Equation (1) is called the Newton-Raphson formula for solving nonlinear equations of 

the form   0xf .  One can repeat this process until one finds the root within a 

desirable tolerance. The order of convergence of N-R method is quadratic. 
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1.5.1 Newton’s algorithm for finding the Pth root of a Number N: 

The Pth root of the a positive number N is the root of the equation.  

   Let 𝑥 = 𝑁
1

𝑝    

     

p 1

p

p

1 p 1

k

P

k
k p 1

k

p P

k k

k

P

k

p 1

k

x N 0

f(x) x N

f (x) px

By Newton'salgorithm

f(x)
x 1

f '(x)

x N
x 1

Px

Px x N

Px

(p 1)x N

Px









 

 



 

 
  
 

 


 


 

 

1.5.2 Newton Raphson formula for cube root of a positive number k. 

3

3

1 2

3

n
n 1 n 2

n

n 2

n

x k

f(x) x k 0

f (x) 3x

x k
x x

3x

1 k
2x

3 x





  




 

 
  

   

 

1.5.3 Newtons – Raphson – formula for a or N  Or  

xn+1 = 
n

n

1 a
x

2 x

 
 

 
n = 0, 1, 2, ….. 

Let 

𝑥 =  𝑎  

𝑥2 − 𝑎 = 0  

Let 𝑓 𝑥 = 𝑥2 − 𝑎 

𝑓 ′ 𝑥 =  2𝑥  

By Newton – Raphson method 
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𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛 )

𝑓 ′ (𝑥𝑛 )
  

        = 𝑥𝑛 −
𝑥𝑛

2−𝑎

2𝑥𝑛
  

 𝑥𝑛+1 =
𝑥𝑛

2 +𝑎

2𝑥𝑛
  

 

1.5.4 When should we not use Newton – Raphson method: 

 If x1 is the exact root and x0 is its approximate value of the equation f(x) =0. 

We know that  x1 = x0 - 
0

1

0

( )

( )

f x

f x
. If f1(x0) is small, the error 0

1

0

( )

( )

f x

f x
 will be large and 

the computation of the root by this method will be a slow process. Hence the method 

should not be used in case where the graph of the functions when it crosses the x 

axis is nearly horizontal. 

 

Example 1: Evaluate 12  applying Newton formula. 

Solution: 

            Let x = 12  

                  x2= 12 ; x2 – 12 = 0 

                       f(x) = x2 – 12 

                       f(3) = -ve, 

                      f(4) = +ve 

take x0 = 3 

𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓 ′(𝑥0)
= 3 −

𝑓(3)

𝑓 ′(3)
= 3.5  

𝑥2 = 𝑥1 −
𝑓(𝑥1)

𝑓 ′(𝑥1)
= 3.5 −

𝑓(3.5)

𝑓 ′(3.5)
= 3.464  

𝑥3 = 𝑥2 −
𝑓(𝑥2)

𝑓 ′(𝑥2)
= 3.464 −

𝑓(3.464)

𝑓 ′(3.464)
= 3.464  

Hence the root of the equation is 3.464. 

 

Example 2: Iteration formula to find the reciprocal of a positive number N by Newton     

Raphson method 

Solution: 

Let 𝑥 =
1

𝑁
 

𝑁 =
1

𝑥
⇒

1

𝑥
− 𝑁 = 0  
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Now 𝑓 𝑥 =
1

𝑥
− 𝑁 

𝑓 ′ 𝑥 = −
1

𝑥2  

By Newton’s Formula 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛 )

𝑓 ′ (𝑥𝑛 )
   

= 𝑥𝑛 −  

1

𝑥𝑛
−𝑁

−
1

𝑥𝑛
2

    

= 𝑥𝑛 +  
1

𝑥𝑛
− 𝑁 𝑥𝑛

2  

𝑥𝑛+1 = 𝑥𝑛 2 − 𝑁𝑥𝑛   

 

Example 3:  Find the square root of 8. by Newton – Raphson Method. 

Solution: 

    Given N = 8 Clearly 02 8 3 taking x 2.5we get    

1 0

0

2 1

1

3 2

2

4 3

3

1 N 1 8
x x 2.5 2.85

2 x 2 2.5

1 N 1 8
x x 2.85 2.8285

2 x 2 2.85

1 N 1 8
x x 2.828 2.8284

2 x 2 2.828

1 N 1 8
x x 2.8284 2.8284

2 x 2 2.8284

8 2.8284

   
       

  

   
       

  

   
       

  

   
       

  

   
 

Example 4: By applying Newton’s method twice, find the real root near 2 of the 

equation   x4 – 12x + 7 = 0 

Solution: 

Let  f(x) = x4 – 12x + 7 

      f(x) = 4x3 – 12 

  Put  x0 = 2, f(x0) = -1 

𝑥1 = 𝑥0 −
𝑓(𝑥0)

𝑓 ′(𝑥0)
= 2 −

𝑓(2)

𝑓 ′(2)
= 2.05 

𝑥2 = 𝑥1 −
𝑓(𝑥1)

𝑓 ′(𝑥1)
= 2.05 −

𝑓(2.05)

𝑓 ′(2.05)
= 2.6706 

𝑥3 = 𝑥2 −
𝑓(𝑥2)

𝑓 ′(𝑥2)
= 2.6706 −

𝑓(2.6706)

𝑓 ′(2.6706)
= 2.6706 

   Therefore the root of the equation is 2.6706. 
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Example 5: If an approximate root of the equation 𝑥( 1 −  𝑙𝑜𝑔𝑥)  =  0.5 lies between 

0.1 and 0.2 find the value of the root correct to three decimal places. 

Solution: 

 Given f(x) = x( 1- log x) -0.5                      

                     f1(x) = (1- logx) + x 1

x

 
 
 

 

                             = - log x 

f(0.1) = 0.1 [1-log (0.1)] – 0.5 = 0.1697 (-ve) 

f(0.2) = 0.2 [1-log (0.2)] – 0.5 = 0.02188 (+ve) 

              x0 = 0.9 

0
1 0 1

0

f(x )
x x

f (x )

0.2(1 log(0.2) 0.5
0.2

log(0.2)

0.02188
0.2 0.1864

1.6094

 

 
 



  

 

1
2 1 1

1

f(x )
x x

f (x )

0.1864(1 log(0.1864) 0.5
0.1864

log(0.1864)

0.0004666
0.1864 0.1866

1.6799

 

 
 



  

 

2
3 1 1

2

f(x )
x x

f (x )

0.1866(1 log (0.1866) 0.5
0.1866

log(0.1866)

0.1866

 

 
 





 

Hence the approximate root is 0.1866.  

 

Example 6: Find the approximate root of xex = 3 by Newton’s Raphson method 

correct to three decimal places. 

Solution: 

 Given  f(x) = xex – 3 

                      Fl(x) = xex + ex                       

                      f(1)  = 1e-1 – 3 = 2.7182 – 3 = - 0.2817 (-ve)  

                      f(1.5) = 1.5e1.5 – 3 = 3.7223 (+ve)  
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Here f(1) is –ve (Negative) and f(1.5) is +ve (positive). Therefore the root lies 

between 1 ad 1.5. Since the magnitude of f(1) < f(1.5) we can take the initial 

approximate    x0 = 1.   

The first approximation is  

0
1 0 1

0

f(x )
x x

f (x )

0.2817
1 1.0518

5.4363




  

 

The second approximation 

1
2 1 1

1

f(x )
x x

f (x )

0.0111
1.0518

5.8739

1.0499

 


 



 

The third approximation is  

2
3 2 1

2

1.0499

1.0499 1.04999

f(x )
x x

f (x )

1.0499 e 3
1.0499

1.0499 e e

1.0499

 


 





 

Hence the root of xex is 1.0499 

 

Example 7: Using Newton Raphson method to find correct to four decimals the root 

between 0 and 1 of the equation x3 – 6x + 4 = 0. 

Solution: 

 Given    f (x) = x3 – 6x + 4 

                        f (0) = 4,   f (1) = -1 

                        f (0) f (1) = 4 (-1) < 0 

The root of f (x) = 0 lies between 0 and 1 the value of the root is near to 1. Let x0 = 

0.7 an approximate         

   

 

3 1 2

3 1 2

0 0 0 0

3

21

f(x) x 6x 4, f (x) 3x 6

f(0) x 6x 4, f (x ) 3x 6

f(0 7) 0.7 6 0.7 4 0.143

f (0.7) 3 0.7 6 4.53

    

    

    

   
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Then by Newton’s iteration formula we get 

     

 

 

   

 





    

1 0 1

0

1

21

1

f(x)
x x

f x

0.7316

f x 0.0019805

f x 3 0.7316 6 4.394

    

The second approximate  

 
1

2 1 1

2

f(x )
x x

f x

0.0019805
0.7316

4.39428

0.73250699

0.7321

 

 





 

The root of the equation = 0.7321 

 

Lets sum up 

Numerical methods are techniques used to find approximate solutions to equations 

that cannot be solved analytically. Here is a brief overview of four common methods 

to the learners: 

 Bisection Method 

Concept: 

 The bisection method is a straightforward approach that repeatedly bisects an 

interval and then selects a subinterval in which a root must lie. This process is 

repeated until the interval is sufficiently small. 

Advantages: 

 Simple and robust. 

 Guaranteed to converge if the initial interval is chosen correctly. 

Disadvantages: 

 Convergence can be slow. 

 Requires the function to change sign over the interval. 
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 Iteration Method (Fixed-Point Iteration) 

Concept: 

 This method transforms an equation of the form f(x)=0 into x=g(x) and uses an 

iterative process to converge to a solution. It relies on the function g(x) being 

chosen such that the sequence of iterations converges to a fixed point. 

Advantages: 

 Simple to implement. 

 Effective for well-behaved functions. 

Disadvantages: 

 Convergence is not guaranteed if the function g(x) is not chosen correctly. 

 May be slow to converge. 

 Regula Falsi Method (False Position Method) 

Concept: 

 This method uses linear interpolation to approximate the root of an equation. It 

refines the interval in which the root lies by repeatedly applying a linear formula to 

find closer approximations. 

Advantages: 

 Typically faster than the bisection method. 

 More reliable convergence than fixed-point iteration. 

Disadvantages: 

 Can be slower than other methods for certain types of functions. 

 May converge slowly if the function is not linear near the root. 

 Newton-Raphson Method 

Concept: 

 This method uses the derivative of the function to find better approximations of the 

root. It iteratively refines the guess using the tangent line at the current 

approximation. 

Advantages: 

 Typically converges very quickly if the initial guess is close to the actual root. 

 Efficient for well-behaved functions. 

Disadvantages: 

 Requires the calculation of the derivative. 

 May fail to converge if the initial guess is not close to the root or if the function is 

not well-behaved. 
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Conclusion 

Each of these methods has its strengths and weaknesses. The choice of method 

depends on the specific problem, the nature of the function, and the required 

precision. Understanding these methods provides a solid foundation for tackling a 

wide range of algebraic and transcendental equations numerically. 

Self Assessment Questions: 

1. Using bisection method, find the negative root of 𝑥3 − 4𝑥 + 9 = 0. 

2. Assuming that a root of 𝑥3 − 9𝑥 + 1 = 0 lies in the interval (2,4), find that root 

by bisection method. 

3. Solve for x from cos 𝑥 − 𝑥𝑒𝑥 = 0 by iteration method. 

4. Solve 𝑥3 = 2𝑥 + 5 for the positive root by iteration method. 

5. Solve for a positive root of 𝑥 − cos 𝑥 = 0 by Regula Falsi method. 

6. Solve the equation 𝑥 𝑡𝑎𝑛𝑥 = −1 by Regula Falsi method starting with a = 2.5 

and b = 3 correct to three decimal places. 

7. Find the real positive root of 3𝑥 − cos 𝑥 − 1 = 0 by Newton’s method. 

8. Solve for positive root by Newton’s method of 2𝑥 − log10 𝑥 = 7. 

 

Answers for check-up your progress: 

1. -2.7064, 2. 2.9429, 3. 0.5177, 4. 2.0945, 5. 0.7391, 6. 2.798, 7. 0.6071,  

8. 3.7893 
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Unit 2  

Numerical Solutions of Equations 

2.0 Introduction 

 In the field of Science and Engineering, the solution of equations of the form 

𝑓 𝑥 = 0 occurs in many applications. If 𝑓 𝑥  is a polynomial of degree two or three 

or four, exact formulae are available. But, if 𝑓 𝑥  is a transcendental function like 

𝑎 + 𝑏𝑒𝑥 + 𝑐 sin 𝑥 + 𝑑 log 𝑥 etc., the solution is not exact and we do not have formulae 

to get the solutions. When the coefficients are numerical values, we can adopt 

various numerical approximate methods such as, 

1. Generalised Newton’s Method 

2. Ramanujan’s Method 

3. The Secant Method 

4. Muller’s Method 

5. Graeffe’s Root squaring Method 

 

2.1 Generalised Newton’s Method 

 If 𝛼 is a root of 𝑓 𝑥 = 0 with multiplicity p, then the iteration formula will be 

 𝑥𝑛+1 = 𝑥𝑛 − 𝑝
𝑓(𝑥𝑛 )

𝑓 ′(𝑥𝑛 )
 

This means that 
1

𝑝
𝑓 ′(𝑥𝑛) is the slope of the line through (𝑥𝑛 , 𝑦𝑛) and intersecting the 

axis of x at (𝑥𝑛+1, 0). Since 𝛼 is a root of 𝑓 𝑥 = 0 with multiplicity p, it implies that 𝛼 

is also a root of 𝑓′ 𝑥 = 0  with multiplicity (p-1) and it is a root of 𝑓′′ 𝑥 = 0 with 

multiplicity (p-2) and so on. Therefore 

 𝑥0 − 𝑝
𝑓(𝑥0)

𝑓 ′(𝑥0)
 , 𝑥0 −  𝑝 − 1 

𝑓′ 𝑥0 

𝑓 ′′ 𝑥0 
  , 𝑥𝑛 − (𝑝 − 2)

𝑓 ′′(𝑥0)

𝑓 ′′′(𝑥0)
  

will all have the same value if the initial approximation 𝑥0 is chosen close to the 

actual root. The order of convergence of this method is two. 

 

Example 1: Find the double root of the equation 𝑥3 − 𝑥2 − 𝑥 + 1 = 0. 

Solution: 

Let 𝑓 𝑥 = 𝑥3 − 𝑥2 − 𝑥 + 1 

𝑓′ 𝑥 = 3𝑥2 − 2𝑥 − 1  

𝑓 ′′ 𝑥 = 6𝑥 − 2  
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Starting with 𝑥0 = 0.9, we have 

𝑥1 = 𝑥0 − 2
𝑓(𝑥0)

𝑓 ′(𝑥0)
= 0.9 − 2

𝑓(0.9)

𝑓 ′(0.9)
= 0.9 −

2 ∗ 0.019

−0.37
= 1.003 

𝑥1 = 𝑥0 − (2 − 1)
𝑓′(𝑥0)

𝑓 ′′(𝑥0)
= 0.9 −

𝑓′(0.9)

𝑓 ′′(0.9)
= 0.9 −

(−0.37)

3.4
= 1.009 

The closeness of these values implies that there is a double root near 𝑥 = 1. 

Choosing 𝑥1 = 1.01 for the next approximation, we get 

𝑥2 = 𝑥1 − 2
𝑓(𝑥1)

𝑓 ′(𝑥1)
= 1.01 − 2

𝑓(1.01)

𝑓 ′(1.01)
= 1.01 −

2 ∗ 0.0002

0.0403
= 1.0001 

𝑥2 = 𝑥1 − (2 − 1)
𝑓 ′ 𝑥1 

𝑓 ′′ 𝑥1 
= 1.01 −

𝑓 ′ 1.01 

𝑓 ′′ 1.01 
= 1.01 −

0.0403

4.06
= 1.0001 

This shows that there is a double root at x = 1.0001 which is quite near the actual 

root x = 1. 

 

Example 2:  Find the double root of 𝑥3 − 5.4𝑥2 + 9.24𝑥 − 5.096 = 0 given that it is 

nearer to 1.5. 

Solution: 

Let 𝑓 𝑥 = 𝑥3 − 5.4𝑥2 + 9.24𝑥 − 5.096 

𝑓 ′ 𝑥 = 3𝑥2 − 10.8𝑥 + 9.24  

𝑓 ′′ 𝑥 = 6𝑥 − 10.8  

Starting with 𝑥0 = 1.5, we have 

𝑥1 = 𝑥0 − 2
𝑓(𝑥0)

𝑓 ′(𝑥0)
= 1.5 − 2

𝑓(1.5)

𝑓 ′(1.5)
= 1.3954 

𝑥1 = 1.5 − (2 − 1)
𝑓 ′ 1.5 

𝑓 ′′ 1.5 
= 1.5 −

𝑓 ′ 1.5 

𝑓 ′′ 1.5 
= 1.3952 

The closeness of these values implies that there is a double root near 𝑥 = 1.4 

Proceeding in this way we get 

𝑥2 = 1.3966, 𝑥3 = 1.4024, 𝑥4 = 1.4211, …  

The root is approximately 1.4 correct to one decimal place. 

 

2.2 Ramanujan’s Method 

It is an iterative method which can be used to determine the smallest real root 

of 𝑓 𝑥 = 0. Where 𝑓 𝑥 = 1 − (𝑎1𝑥 + 𝑎2𝑥
2 + ⋯ ), here 𝑎1, 𝑎2, 𝑎3, … are real 

constants. For small values of x, we can arrive 
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 1 −  𝑎1𝑥 + 𝑎2𝑥
2 + ⋯  −1 = 𝑏1 + 𝑏2𝑥 + 𝑏3𝑥

2 + ⋯  

1 +  𝑎1𝑥 + 𝑎2𝑥
2 + ⋯ +  𝑎1𝑥 + 𝑎2𝑥

2 + ⋯ 2 + ⋯ = 𝑏1 + 𝑏2𝑥 + 𝑏3𝑥
2 + ⋯  

Comparing the coefficients of like power of x on both sides, we obtain 

𝑏1 = 1 

𝑏2 = 𝑎1 = 𝑎1. 1 = 𝑎1𝑏1 

𝑏3 = 𝑎2 + 𝑎1
2 = 𝑎2𝑏1 + 𝑎1𝑏2 

And so on 

𝑏𝑛 = 𝑎1𝑏𝑛−1 + 𝑎2𝑏𝑛−2 + ⋯ + 𝑎𝑛−1𝑏1  where n=2,3,4,… 

The ratios 
𝑏𝑖−1

𝑏𝑖
 called the convergents, approach in the limit, the smallest root of 

𝑓 𝑥 = 0. 

 

Example 1: Using Ramanujan’s method obtain first five convergence of the equation  

𝑓 𝑥 = 𝑥3 − 6𝑥2 + 11𝑥 − 6 . 

Solution: 

Given 𝑓 𝑥 = 𝑥3 − 6𝑥2 + 11𝑥 − 6 

Let 𝑥3 − 6𝑥2 + 11𝑥 − 6 = 0  

𝑥3−6𝑥2+11𝑥

6
− 1 = 0  

The smallest real root of the given equation is 

 1 −  
𝑥3 − 6𝑥2 + 11𝑥

6
  

−1

= 𝑏1 + 𝑏2𝑥 + 𝑏3𝑥
2 + 𝑏4𝑥

3 + 𝑏5𝑥
4 + 𝑏6𝑥

5 + 𝑏7𝑥
6 + ⋯ 

Here 𝑎1 =
11

6
, 𝑎2 = −1, 𝑎3 =

1

6
, 𝑎4 = 0, 𝑎5 = 0, 𝑎6 = 0, 𝑎7 = 0 

𝑏1 = 1  

𝑏2 = 𝑎1𝑏1 =
11

6
∗ 1 =

11

6
  

𝑏3 = 𝑎2𝑏1 + 𝑎1𝑏2 = −1 ∗ 1 +
11

6
+

11

6
=

85

36
 

𝑏4 = 𝑎1𝑏3 + 𝑎2𝑏2 + 𝑎3𝑏1 =
11

6
∗

85

36
+   −1 ∗

11

6
+

1

6
∗ 1 =

575

216
  

𝑏5 = 𝑎1𝑏4 + 𝑎2𝑏3 + 𝑎3𝑏2 + 𝑎4𝑏1 =
11

6
∗

575

216
+   −1 ∗

85

36
+

1

6
∗

11

6
+ 0 =

3675

1296
  

𝑏6 = 𝑎1𝑏5 + 𝑎2𝑏4 + 𝑎3𝑏3 + 𝑎4𝑏2 + 𝑎5𝑏1 =
11

6
∗

3675

1296
+  −1 ∗

575

216
+

1

6
∗

85

36
=

22785

7776
  

1st Convergent 
𝑏1

𝑏2
= 0.5454 

2nd Convergent 
𝑏2

𝑏3
= 0.7764 
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3rd Convergent 
𝑏3

𝑏4
= 0.8869 

4th Convergent 
𝑏4

𝑏5
= 0.9387 

5th Convergent 
𝑏5

𝑏6
= 0.9670 

The smallest root for the given equation is 0.967. 

 

Example 2: Find a root of the equation 𝑥 𝑒𝑥 = 1 by Ramanujan’s method. 

Solution: 

Given 𝑓 𝑥 = 𝑥 𝑒𝑥 − 1 

Expanding 𝑒𝑥  in ascending powers of x and simplifying, we get 

1 = 𝑥 + 𝑥2 +
𝑥3

2
+

𝑥4

6
+

𝑥5

24
+ ⋯  

Here 𝑎1 = 1, 𝑎2 = 1, 𝑎3 =
1

2
, 𝑎4 =

1

6
, 𝑎5 =

1

24
, … 

Then 𝑏1 = 1 

𝑏2 = 𝑎1𝑏1 = 1  

𝑏3 = 𝑎2𝑏1 + 𝑎1𝑏2 = 1 + 1 = 2 

𝑏4 = 𝑎1𝑏3 + 𝑎2𝑏2 + 𝑎3𝑏1 = 2 + 1 +
1

2
=

7

2
  

𝑏5 = 𝑎1𝑏4 + 𝑎2𝑏3 + 𝑎3𝑏2 + 𝑎4𝑏1 =
7

2
+ 2 +

1

2
+

1

6
= 6.1667  

 𝑏6 = 𝑎1𝑏5 + 𝑎2𝑏4 + 𝑎3𝑏3 + 𝑎4𝑏2 + 𝑎5𝑏1 = 10.8750  

Hence 

1st Convergent 
𝑏1

𝑏2
= 1 

2nd Convergent 
𝑏2

𝑏3
= 0.5 

3rd Convergent 
𝑏3

𝑏4
= 0.5714 

4th Convergent 
𝑏4

𝑏5
= 0.5676 

5th Convergent 
𝑏5

𝑏6
= 0.5670 

The smallest root for the given equation is 0.567. 

 

2.3 The Secant Method 

This method is an improvement over the method of false position as it does 

not require the condition 𝑓 𝑥0 𝑓 𝑥1 < 0 of that method. Here also the graph of the 

function 𝑦 = 𝑓(𝑥) is approximated by a secant line but at each iteration, two most 



 21 

recent approximations to the root are used to find the next approximation. Also it is 

not necessary that the interval must contain the root. Taking 𝑥0 , 𝑥1 as the initial limits 

of the interval, we write the equation of the chord joining these as 

𝑦 − 𝑓 𝑥1 =
𝑓 𝑥1 − 𝑓(𝑥0)

𝑥1 − 𝑥0
 (𝑥 − 𝑥1) 

Then the abscissa of the point where it crossed the x-axis (y=0) is given by 

𝑥2 = 𝑥1 −
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓(𝑥0)
 𝑓(𝑥1) 

Which is an approximation to the root. The general formula for successive 

approximations is given by 

𝑥𝑛+1 = 𝑥𝑛 −
𝑥𝑛−𝑥𝑛−1

𝑓 𝑥𝑛  −𝑓(𝑥𝑛−1)
 𝑓 𝑥𝑛 , 𝑛 ≥ 1.  

The rate of convergence of this method is 1.6 which is faster than that of the method 

of false position. 

 

Example 1: Find a root of the equation 𝑥3 − 2𝑥 − 5 = 0 using secant method correct 

to three decimal places. 

Solution: 

Let 𝑓 𝑥 = 𝑥3 − 2𝑥 − 5 

Here 𝑓 2 = −1 𝑎𝑛𝑑 𝑓 3 = 16 

Hence the root lies between 2 and 3. 

Taking initial approximations 𝑥0 = 2 𝑎𝑛𝑑 𝑥1 = 3, by secant method, we have 

𝑥2 = 𝑥1 −
𝑥1−𝑥0

𝑓 𝑥1 −𝑓(𝑥0)
 𝑓 𝑥1 = 3 −

(3−2)

(16+1)
∗ 16 = 2.0588  

𝑓 𝑥2 = −0.3908  

𝑥3 = 𝑥2 −
𝑥2−𝑥1

𝑓 𝑥2 −𝑓(𝑥1)
 𝑓 𝑥2 = 2.0813  

𝑓 𝑥3 = −0.1472  

𝑥4 = 𝑥3 −
𝑥3−𝑥2

𝑓 𝑥3 −𝑓(𝑥2)
 𝑓 𝑥3 = 2.0948  

𝑓 𝑥4 = 0.00304  

𝑥5 = 𝑥4 −
𝑥4−𝑥3

𝑓 𝑥4 −𝑓(𝑥3)
 𝑓 𝑥4 = 2.0945  

Hence the root is 2.094 correct to 3 decimal places. 
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Example 2: Find a root of the equation 𝑥𝑒𝑥 = cos 𝑥 using secant method correct to 

three decimal places. 

Solution: 

Let 𝑓 𝑥 = 𝑥𝑒𝑥 − cos 𝑥 

Here 𝑓 0 = 1 𝑎𝑛𝑑 𝑓 1 = −2.17798 

Hence the root lies between 0 and 1 

Taking initial approximations 𝑥0 = 0 𝑎𝑛𝑑 𝑥1 = 1, by secant method, we have 

𝑥2 = 𝑥1 −
𝑥1−𝑥0

𝑓 𝑥1 −𝑓(𝑥0)
 𝑓 𝑥1 = 1 +

−2.17798

3.17798
= 0.31467  

𝑓 𝑥2 = 0.51987  

𝑥3 = 𝑥2 −
𝑥2−𝑥1

𝑓 𝑥2 −𝑓(𝑥1)
 𝑓 𝑥2 = 0.4467  

𝑓 𝑥3 = 0.20354  

𝑥4 = 𝑥3 −
𝑥3−𝑥2

𝑓 𝑥3 −𝑓(𝑥2)
 𝑓 𝑥3 = 0.5317  

Repeating this process, the successive approximations are 𝑥5 = 0.5169, 𝑥6 =

0.5177, 𝑥7 = 0.5177. 

Hence the root is 0.5177. 

 

2.4 Muller’s Method 

This method is a generalization of the secant method as it doesn’t require the 

derivative of the function. It is an iterative method that requires three starting points. 

Here 𝑦 = 𝑓(𝑥) is approximated by a second degree parabola passing through these 

three point  𝑥𝑖−2, 𝑦𝑖−2 ,  𝑥𝑖−1, 𝑦𝑖−1  𝑎𝑛𝑑  𝑥𝑖 , 𝑦𝑖  in the vicinity of the root. Then the root 

of this quadratic is taken as the next approximations 𝑥𝑖+1 to the root of 𝑓 𝑥 = 0. 

Assuming the equation of the parabola through the points 

 𝑥𝑖−2, 𝑦𝑖−2 ,  𝑥𝑖−1, 𝑦𝑖−1  𝑎𝑛𝑑  𝑥𝑖 , 𝑦𝑖  to be  

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

𝑦𝑖−2 = 𝑎𝑥𝑖−2 2 + 𝑏𝑥𝑖−2 + 𝑐 

𝑦𝑖−1 = 𝑎𝑥𝑖−1 2 + 𝑏𝑥𝑖−1 + 𝑐 

𝑦𝑖 = 𝑎𝑥𝑖  
2 + 𝑏𝑥𝑖 + 𝑐 

Eliminating a, b, c we get 

𝑦 =
 𝑦𝑖−2𝜆𝑖+𝑦𝑖−1𝛿𝑖+𝑦𝑖 𝜆𝑖𝜆

2

𝛿𝑖
+

𝑦𝑖−2𝜆𝑖
2−𝑦𝑖−1𝛿𝑖

2+𝑦𝑖(𝜆𝑖+𝛿𝑖)

𝛿𝑖
𝜆 + 𝑦𝑖   

Where 𝜆 =
𝑥−𝑥𝑖

𝑥𝑖−𝑥𝑖−1
 , 𝜆𝑖 =

𝑥𝑖−𝑥𝑖−1

𝑥𝑖−1−𝑥𝑖−2
  𝑎𝑛𝑑 𝛿𝑖 =

𝑥𝑖−𝑥𝑖−2

𝑥𝑖−1−𝑥𝑖−2
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Now to find a better approximation to the root, we need the unknown quantity 𝜆.  

Since, 

 𝜇𝑖 = 𝑦𝑖−2𝜆𝑖
2 − 𝑦𝑖−1𝛿𝑖

2 + 𝑦𝑖(𝜆𝑖 + 𝛿𝑖) 

 

Example 1: Apply Muller’s method to find the root of the equation cos 𝑥 = 𝑥𝑒𝑥  which 

lies between 0 and 1. 

Solution: 

Let 𝑦 = cos 𝑥 − 𝑥𝑒𝑥  

Taking the initial approximations as 

𝑥𝑖−2 =  −1, 𝑥𝑖−1 =  0, 𝑥𝑖 = 1  

𝑦𝑖−2 = cos 1 + 𝑒−1, 𝑦𝑖−1 = 1, 𝑦𝑖 = 𝑐𝑜𝑠 1 − 𝑒  

𝜆 = 𝑥 − 1, 𝜆𝑖 = 1, 𝛿𝑖 = 2  

𝜇𝑖 =  cos 1 + 𝑒−1 − 4 + 3 (cos 1 − 𝑒)  

We get two values of 𝜆−1. 

We choose the negative sign so that the numerator is largest in magnitude and 

obtain 𝜆 = −0.5585. 

The next approximation to the root is given by 

𝑥𝑖+1 = 𝑥𝑖 + 𝜆 𝑥𝑖 − 𝑥𝑖−1 = 1 − 0.5585 = 0.4415.  

Repeating the above process, we get 

𝑥𝑖+2 = 0.5125, 𝑥𝑖+3 = 0.5177, 𝑥𝑖+4 = 0.5177  

Hence the root is 0.5177. 

 

2.5 Graeffe’s Root Squaring Method 

 This method has an advantage over the other methods that it does not require 

any prior information about the root. But it is applicable to polynomial equations only 

and is capable of giving all the roots. Consider the polynomial equation 

 𝑥𝑛 + 𝑎1𝑥
𝑛−1 + 𝑎2𝑥

𝑛−2 + ⋯ + 𝑎𝑛−1𝑥 + 𝑎𝑛 = 0   (1) 

Separating the even and odd powers of x and squaring, we get 

 𝑥𝑛 + 𝑎2𝑥
𝑛−2 + 𝑎4𝑥

𝑛−4 + ⋯ 2 =  𝑎1𝑥
𝑛−1 + 𝑎3𝑥

𝑛−3 + ⋯ 2  

Putting 𝑥2 = 𝑦  and simplifying, 

𝑦𝑛 + 𝑏1𝑦
𝑛−1 + ⋯ + 𝑏𝑛−1𝑦 + 𝑏𝑛 = 0      (2) 

Where 𝑏1 = −𝑎1
2 + 2𝑎2 

𝑏2 = 𝑎2
2 − 2𝑎1𝑎3 + 2𝑎4  
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………………………… 

𝑏𝑛 =  −1 𝑛𝑎𝑛
2   

If 𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑛    be the roots of (1) then the roots of (2) are 𝛼1
2, 𝛼2

2 , 𝛼3
2, … , 𝛼𝑛

2 .    

After m squaring, let the new transferred equation be  

𝑧𝑛 + 𝑐1𝑧
𝑛−1 + 𝑐2𝑧

𝑛−2 + ⋯ + 𝑐𝑛−1𝑧 + 𝑐𝑛 = 0  

Whose roots 𝛾1, 𝛾2, 𝛾3, … , 𝛾𝑛    are such that 𝛾𝑖 = 𝛼𝑖
2𝑚 , 𝑖 = 12, …𝑛 

Assuming that 
 𝛾2 

 𝛾1 
=

𝛾2

𝛾1
, … ,

 𝛾𝑛  

 𝛾𝑛−1 
=

𝛾𝑛

𝛾𝑛−1
  are negligible as compared to unity. Also 𝛾𝑖  

being an even power of 𝛼𝑖  is always positive. 

We have  𝛾1 = −𝑐1 that is 𝑐1 = −𝛾1  1 +
𝛾2

𝛾1
+

𝛾3

𝛾1
+ ⋯  

 𝛾1𝛾2 = 𝑐2 that is 𝑐2 = 𝛾1𝛾2  1 +
𝛾3

𝛾1
+ ⋯  

 𝛾1𝛾2 𝛾3 = −𝑐3 that is 𝑐3 = −𝛾1𝛾2𝛾3  1 +
𝛾4

𝛾1
+ ⋯  

……………………….. 

We get 𝛾1 = −𝑐1, 𝛾2 = −
𝑐2

𝑐1
 , 𝛾3 = −

𝑐3

𝑐2
 , … 

Now 𝛾𝑖 = 𝛼𝑖
2𝑚  hence 𝛼𝑖 =  𝛾𝑖 

1/2𝑚  

Thus we can find 𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑛    the roots of given equation. 

 

Example 1: Find all the roots of the equation 𝑥3 − 2𝑥2 − 5𝑥 + 6 = 0 by Graeffe’s 

method, squaring thrice. 

Solution:  

Let 𝑓 𝑥 = 𝑥3 − 2𝑥2 − 5𝑥 + 6      (1) 

By Descart’s rule of signs, ther being two changes of sign, then f(x) has two positive 

roots. Also 

𝑓 −𝑥 = −𝑥3 − 2𝑥2 + 5𝑥 + 6  

f(-x) has one change in sign, there is one negative root. 

Rewriting (1) as 𝑥3 − 5𝑥 = 2𝑥2 − 6 and squaring we get 𝑦 𝑦 − 5 2 =  2𝑦 − 6 2 where 

𝑦 = 𝑥2 

𝑦 𝑦2 + 49 = 14𝑦2 + 36  

Squaring again and putting 𝑦2 = 𝑧, we obtain 𝑧 𝑧 + 49 2 =  14𝑧 + 36 2 

𝑧 𝑧2 + 1393 = 98𝑧2 + 1296  

Squaring once again and putting 𝑧2 = 𝑢, we get 𝑢 𝑢 + 1393 2 =  98𝑢 + 1296 2 

𝑢3 − 6818𝑢2 + 1686433𝑢 − 1679616 = 0     (2) 



 25 

If the roots of (2) are 𝛾1, 𝛾2, 𝛾3  then 𝛾1 = −𝑐1 = 6818 

𝛾2 = −
𝑐2

𝑐1
= 247.3501  

𝛾3 = −
𝑐3

𝑐2
= 0.996  

If 𝛼1, 𝛼2, 𝛼3 be the roots of (1), then 

𝛼1 = 𝛾1

1

8 = 3.0144 , 𝛼2 = 𝛾2

1

8 = 1.9914, 𝛼3 = 𝛾3

1

8 = 0.9995 

Hence the roots are 3, -2, 1. 

 

Lets Sum up 

Numerical methods for solving nonlinear equations are essential when analytical 

solutions are not feasible. Here is an overview of some advanced methods: 

Generalised Newton’s Method, Ramanujan’s Method, The Secant Method, Muller’s 

Method, and Graeffe’s Root Squaring Method. 

 Generalised Newton’s Method 

Concept: 

 An extension of the classic Newton-Raphson method, the Generalised Newton’s 

Method is designed to handle systems of nonlinear equations. It iteratively refines 

guesses by solving a linear system derived from the Jacobian matrix of the 

functions. 

Advantages: 

 Efficient for systems of equations. 

 Quadratic convergence near the root. 

Disadvantages: 

 Requires computation of the Jacobian matrix. 

 Can be complex to implement and may not converge if the initial guess is not 

close to the true solution. 

 Ramanujan’s Method 

Concept: 

 Based on the work of the famous mathematician Srinivasa Ramanujan, this 

method is less well-known but involves iterative processes often based on series 

expansions or other ingenious approximations to solve equations. 

Advantages: 

 Can provide very accurate results for specific types of equations. 
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 Often involves elegant and novel approaches. 

Disadvantages: 

 Not widely documented or used compared to other methods. 

 May be more difficult to apply to general problems. 

 The Secant Method 

Concept: 

 An improvement over the bisection method, the Secant Method uses secant lines 

(instead of tangents as in Newton-Raphson) to approximate the root. It requires 

two initial guesses but does not need the calculation of derivatives. 

Advantages: 

 Faster convergence than bisection. 

 Does not require derivative calculation. 

Disadvantages: 

 Slower convergence than Newton-Raphson. 

 May fail to converge if the initial guesses are not well chosen. 

 Muller’s Method 

Concept: 

 This method uses quadratic interpolation to approximate the root of a function. It 

extends the idea of the Secant Method by fitting a parabola through three points 

and finding the root of the interpolating quadratic polynomial. 

Advantages: 

 Can converge faster than the Secant and Newton-Raphson methods. 

 Effective for complex roots and well-suited for polynomial equations. 

Disadvantages: 

 More computationally intensive. 

 Requires careful handling of complex arithmetic. 

 Graeffe’s Root Squaring Method 

Concept: 

 This method is used primarily for finding all the roots of a polynomial. It repeatedly 

squares the polynomial and separates the roots by squaring the magnitude of 

each root. 

Advantages: 

 Efficient for finding all roots of a polynomial. 

 Can handle large polynomials with multiple roots. 
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Disadvantages: 

 May require high precision arithmetic to avoid numerical instability. 

 Not suitable for non-polynomial equations. 

Conclusion 

Each method has its unique strengths and is suited for different types of problems. 

Understanding these methods expands the toolkit for solving a wide range of 

nonlinear equations, enabling the selection of the most appropriate method based on 

the problem's characteristics. 

 

Self Assessment Questions: 

1. Find the smallest root, correct to 4 decimal places of the equation 𝑓 𝑥 = 3𝑥 −

cos 𝑥 − 1 = 0 by Ramanujan Method. 

2. Find the smallest root, correct to 4 decimal places of the equation sin 𝑥 = 𝑥 −

1

2
, by Ramanujan Method. 

3. Find a root of the equation 𝑥3 + 𝑥2 + 𝑥 + 7 = 0 using secant method correct to 

three decimal places. 

4. Find a root of the equation 𝑥 𝑙𝑜𝑔10𝑥 = 1.9 using secant method correct to 

three decimal places. 

5. Apply Muller’s method to find the root of the equation 𝑥3 − 2𝑥 − 1 = 0. 

6. Apply Muller’s method to find the root of the equation log 𝑥 = 𝑥 − 3, taking  

𝑥0 = 0.25, 𝑥1 = 0.5 𝑎𝑛𝑑 𝑥2 = 1  

7. Apply Graeffe’s method to find all the roots of the equation 𝑥4 − 3𝑥 + 1 = 0. 

8. Determine all the roots of the equation 𝑥3 − 9𝑥2 + 18𝑥 − 6 = 0 by Graeffe’s 

method. 

 

Answers for check-up your progress 

1. 0.6071,  2. 1.4973,  3. -2.0625,  4. 3.496,  5. 2.26,  6. 3.14,  7. 1.1892, 0.3379, 

-0.7636 ± 1.381i, 8. 6.3, 2.3, 0.4 
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i i 

Unit 3  

FINITE DIFFERENCES 

3.0 Introduction 

Let us assume that values of a function y=f(x) are known for a set of equally 

spaced values of x given by {x0,x1,...,xn}, such that the spacing between any two 

consecutive values is equal. Thus, x1=x0+h, x2=x1+h, ..., xn=xn–1+h, so that xi=x0+ih 

for i=1,2,...,n. We consider two types of differences known as forward differences and 

backward differences of various orders. These differences can be tabulated in a finite 

difference table as explained in the sub sequent sections. 

  

 3.1 Forward Difference 

Let y0,y1,...,yn be the values of a function y=f(x) at the equally spaced values of 

x=x0,x1,...,xn. The differences between two consecutive y given by 𝑦1– 𝑦
0

,

𝑦
2
– 𝑦

1
, . . . ,   𝑦𝑛– 𝑦𝑛−1 are called the first order forward differences of the function y=f(x) 

at the points x0,x1,...,xn–1. These differences are denoted by,  

∆𝑦0  =  𝑦1 – 𝑦0 , ∆𝑦1  =  𝑦2 –  𝑦1, . . . , ∆𝑦𝑛−1 =  𝑦𝑛  – 𝑦𝑛−1 

Where ∆ is termed as the forward difference operator defined by, 

∆f (x) = f (x + h) – f (x) 

Thus, ∆ 𝑦𝑖  =  𝑦𝑖+1 – 𝑦𝑖 , for i = 0, 1, 2, ..., n – 1, are the first order forward differences 

at 𝑥𝑖. 

The differences of these first order forward differences are called the second 

order forward differences. 

Thus, 

∆2 𝑦 =  ∆(∆𝑦 ) =  ∆𝑦𝑖 + 1 – ∆𝑦𝑖  , 𝑓𝑜𝑟 𝑖 =  0, 1, 2, . . . , 𝑛 –  2 

Evidently, 

∆2𝑦0  =  ∆𝑦1 – ∆𝑦0  =  𝑦2 –  𝑦1 – ( 𝑦1 – 𝑦0 )  =  𝑦2 –  2 𝑦1  +  𝑦0 

And,∆2𝑦𝑖  =  𝑦𝑖+2 – 𝑦𝑖+1 – ( 𝑦𝑖+1 – 𝑦𝑖  ) 

Finally, we can define the nth order forward difference by, 

∆𝑛𝑦0 = 𝑦𝑛 − 𝑛𝑦𝑛−1 +
𝑛(𝑛 − 1)

2
𝑦𝑛−2 + ⋯ +  −1 𝑛𝑦0 

The forward differences of various orders for a table of values of a function y=f(x), 

are usually computed and represented in a diagonal difference table. A diagonal 
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difference table for a table of values of y=f(x), for six points 𝑥0 , 𝑥
1

, 𝑥
2

, 𝑥
3

, 𝑥4 , 𝑥5  is shown 

here. 

Diagonal difference Table for y=f(x): 

 

The entries in any column of the differences are computed as the differences of the 

entries of the previous column and one placed in between them. The upper data in a 

column is subtracted from the lower data to compute the forward differences. We 

notice that the forward differences of various orders with respect to 𝑦𝑖  are along the 

forward diagonal through it. Thus ∆𝑦0, ∆2𝑦0, ∆3𝑦0, ∆4𝑦0 𝑎𝑛𝑑 ∆5𝑦0 lie along the top 

forward diagonally through 𝑦0. 

 

Example 1: Given the table of values of 𝑦 = 𝑓(𝑥) 

X 1 3 5 7 9 

y 8 12 21 36 62 

Form the diagonal difference table and find the values of ∆𝑓 5 , ∆2𝑓 3 , ∆3𝑓 1 .  

Solution: 

The diagonal difference table is, 
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From the table, we find that ∆𝑓 5 = 15, the entry along the diagonal through the 

entry 21 of f(5). Similarly, ∆2𝑓 3 = 6 the entry along the diagonal through f(3). 

Finally, ∆3𝑓 1 = 1. 

 

3.2 Backward Difference 

The backward differences of various orders for a table of values of a function 

𝑦 = 𝑓(𝑥) are defined in a manner similar to the forward differences. The backward 

difference operator ∇ is defined by ∇𝑓 𝑥 = 𝑓 𝑥 − 𝑓(𝑥 − 𝑕) 

Thus ∇yk = 𝑦𝑘 − 𝑦𝑘−1 for k=1,2,…n 

That is ∇y1 = 𝑦1 − 𝑦0, ∇y2 = 𝑦2 − 𝑦1, … , ∇y𝑛 = 𝑦𝑛 − 𝑦𝑛−1 

The backward differences of second order are defined by 

∇2yk = ∇𝑦𝑘 − ∇𝑦𝑘−1 = 𝑦𝑘 − 2𝑦𝑘−1 + 𝑦𝑘−2 

Hence ∇2y2 = 𝑦2 − 2𝑦1 + 𝑦0 and ∇2y𝑛 = 𝑦𝑛 − 2𝑦𝑛−1 + 𝑦𝑛−2 

Higher order backward differences can be defined in a similar manner. 

Thus ∇3y𝑛 = 𝑦𝑛 − 3𝑦𝑛−1 + 3𝑦𝑛−2 − 𝑦𝑛−3, etc. 

The backward differences of various orders can be computed and placed in a 

diagonal difference table. The backward differences at a point are then found along 

the backward diagonal through the point. The following table shows the backward 

differences entries. 

Diagonal difference table of backward differences 

 

The entries along a column in the table are computed as the differences of the 

entries in the previous column and are placed in between. We notice that the 

backward differences of various orders with respect to 𝑦𝑖  are along the backward 

diagonal through it. Thus ∇𝑦5, ∇2𝑦5, ∇3𝑦5, ∇4𝑦5 𝑎𝑛𝑑 ∇5𝑦5 lie along the lowest backward 

diagonally through 𝑦5. 
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Example 1: Given the table of values of 𝑦 = 𝑓(𝑥) 

X 1 3 5 7 9 

y 8 12 21 36 62 

Find the values of ∇𝑦7, ∇2𝑦9, ∆3𝑦9.  

Solution: 

The diagonal difference table is, 

 

From the table, we can easily find, ∇𝑦7 = 15, ∇2𝑦9 = 11, ∆3𝑦9 = 5. 

 

Example 2: Find the 7th term of the sequence 2, 9, 28, 65, 126, 217 and also find the 

general term. 

Solution: 

    x 
 

    Y 
 

y  2 y  3 y  4 y  

 
0 
 
1 
 
2 
 
3 
 
4 
 
5 

 
2 
 
9 
 
28 
 
65 
 
126 
 
217 

 
 
7 
 
19 
 
37 
 
61 
 
91 

 
 
 
12 
 
18 
 
24 
 
30 

 
 
 
 
6 
 
6 
 
6 
 

 
 
 
 
 
0 
 
0 

 

7th term=𝑦6 =  1 + ∆ 6 𝑦0 = 𝑦0 + 6𝐶1 ∆𝑦0 + 6𝐶2 ∆2𝑦0 + 6𝐶3 ∆3𝑦0 + ⋯ 

                   = 2+6(7)+15(12)+20(6)+0 = 344 

𝑦𝑛 =  1 + ∆ 𝑛  𝑦0 = 𝑦0 + 𝑛𝐶1 ∆𝑦0 + 𝑛𝐶2 ∆2𝑦0 + 𝑛𝐶3 ∆3𝑦0 + ⋯  
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        = 2 + 𝑛 7 +
𝑛(𝑛−1)

2
  12 +

𝑛 𝑛−1 (𝑛−2)

6
  6 + 0    

        = 𝑛3 + 3𝑛2 + 3𝑛 + 2  

    𝑦6 = 344.  

 

3.3 Central Difference  

The central difference operator denoted by 𝛿 is defined by 

𝛿𝑦 𝑥 = 𝑦  𝑥 +
𝑕

2
 − 𝑦  𝑥 −

𝑕

2
  

Thus 𝛿𝑦 𝑥 =  𝐸
1

2 − 𝐸−
1

2 𝑦(𝑥) 

Giving the operator relation, 𝛿 = 𝐸
1

2 − 𝐸−
1

2  𝑜𝑟 𝛿𝐸
1

2 = 𝐸 − 1 

Also 𝛿𝑦𝑛 =  𝐸
1

2 − 𝐸−
1

2 𝑦 𝑥𝑛 = 𝐸
1

2𝑦𝑛 − 𝐸−
1

2𝑦𝑛  

That is 𝛿𝑦𝑛 = 𝑦
𝑛+

1

2

− 𝑦
𝑛−

1

2

 

Further 

𝛿2𝑦𝑛 = 𝛿(𝛿𝑦𝑛) = 𝛿𝑦
𝑛+

1

2

− 𝛿𝑦
𝑛−

1

2

 

𝛿2𝑦𝑛 =  𝐸 + 𝐸−1 − 2 𝑦𝑛  

That is 𝛿2 = 𝐸 + 𝐸−1 − 2 

Even though the central difference operator uses fractional arguments, still it is widely 

used. This is related to the averaging operator and is defined by, 

𝜇 =
1

2
 𝐸

1

2 − 𝐸−
1

2  

𝜇2 =
1

4
 𝐸 + 2 + 𝐸−1 =

1

4
 𝛿2 + 2 + 2 = 1 +

1

4
𝛿2 

It may be noted that,𝛿𝑦1

2

= 𝑦1 − 𝑦0 = ∇𝑦1 

Also, 𝛿𝐸
1

2𝑦1 = 𝑦2 − 𝑦1 = ∆𝑦1 

∴ 𝛿𝐸
1

2 = ∆= 𝐸 − 1 

 

Example 1: Evaluate ∆ tan−1 𝑥 

Solution: 

∆ tan−1 𝑥 = tan−1(𝑥 + 𝑕) − tan−1 𝑥 

∆ tan−1 𝑥 = tan−1  
𝑥 + 𝑕 − 𝑥

1 + (𝑥 + 𝑕)𝑥
 = tan−1  

𝑕

1 + 𝑕𝑥 + 𝑥2
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Example 2: Evaluate ∆2 cos 2𝑥 

Solution: 

∆2 cos 2𝑥 = ∆ cos 2 𝑥 + 𝑕 − cos 2𝑥 = ∆ cos 2 𝑥 + 𝑕 − ∆ cos 2𝑥  

=  cos 2 𝑥 + 2𝑕 − cos 2 𝑥 + 𝑕  − [cos 2 𝑥 + 𝑕 − cos 2𝑥]  

= −2 sin 2𝑥 + 3𝑕 sin 𝑕 + 2 sin 2𝑥 + 𝑕 sin 𝑕  

= −2 sin 𝑕 [2 cos 2𝑥 + 2𝑕 sin 𝑕]  

= −4 sin2 𝑕 cos(2𝑥 + 2𝑕)  

 

Example 3: Prove the following operator relations. (i) ∆= ∇𝐸 (ii)  1 + ∆  1 − ∇ = 1 

(iii) 𝐸 = 𝑒𝑕𝐷 

Solution: 

(i) Since ∆𝑓 𝑥 = 𝑓 𝑥 + 𝑕 − 𝑓 𝑥 = 𝐸𝑓 𝑥 − 𝑓 𝑥 , ∆= 𝐸 − 1 

Or 1 + ∆= 𝐸        (i) 

Also ∇𝑓 𝑥 = 𝑓 𝑥 − 𝑓 𝑥 − 𝑕 =  1 − 𝐸−1 𝑓 𝑥 , ∇= 1 − 𝐸−1 

Or 1 − ∇= 𝐸−1       (ii) 

Thus, ∇=
𝐸−1

𝐸
 𝑜𝑟 ∇E = E − 1 = ∆ 

Hence ∆= ∇𝐸 

(ii) From (i) and (ii) 

 1 + ∆  1 − ∇ = 𝐸 ∗ 𝐸−1 = 1 

(iii) 𝐸𝑓 𝑥 = 𝑓 𝑥 + 𝑕 = 𝑓 𝑥 + 𝑕 𝑓 ′ 𝑥 +
𝑕2

2!
𝑓 ′′  𝑥 + ⋯ 

= 𝑓 𝑥 + 𝑕𝐷𝑓 𝑥 +
𝑕2

2!
𝐷2𝑓 𝑥 + ⋯  

=  1 + 𝑕𝐷 +
𝑕2

2!
𝐷2 +

𝑕3

3!
𝐷3 + ⋯  𝑓 𝑥 = 𝑒𝑕𝐷  𝑓(𝑥)  

∴ 𝐸 = 1 + ∆= 𝑒𝑕𝐷
  

 

Example 4: Prove the following operator relations. (i) 𝜇 +
1

2
𝛿 = 𝐸1/2   (ii) 𝜇 −

1

2
𝛿 =

𝐸−1/2  (iii) 𝜇𝛿 =
1

2
(∆ + ∇) 

Solution: 

𝜇 +
1

2
𝛿 =

𝐸1/2+𝐸−1/2

2
+

𝐸1/2−𝐸−1/2

2
 = 𝐸1/2  

𝜇 −
1

2
𝛿 =

𝐸1/2+𝐸−1/2

2
−

𝐸1/2−𝐸−1/2

2
 = 𝐸−1/2  

1

2
 ∆ + ∇ =

1

2
 𝐸 − 1 + 1 − 𝐸−1 =

1

2
 𝐸 − 𝐸−1 = 𝜇𝛿  
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3.4 Detection of errors by using difference table 

Suppose there is an error 𝜀 in the entry 𝑦5 of a table. As higher differences are 

formed, this error spreads out and is considerably magnified. Let us see, how it 

effects the difference table. 

 The error increases with the order of differences. 

 The coefficient of 𝜀′𝑠 in any column are the binomial coefficient of  1 − 𝜀 𝑛 .  

Thus the errors in the fourth difference column are 𝜀, −4𝜀, 6𝜀, −4𝜀, 𝜀. 

 The algebraic sum of the errors in any difference column is zero. 

 The maximum error in each column, occurs opposite to the entry containing 

the error. That is 𝑦5. 

 

Example 1: One entry in the following table is incorrect and y is a cubic polynomial in 

x. Use the difference table to locate and correct the error. 

X 0 1 2 3 4 5 6 7 

Y 25 21 18 18 27 45 76 123 

Solution: The difference table is given by  

x y ∆𝑦 ∆2𝑦 ∆3𝑦 

0 
 
1 
 
2 
 
3 
 
4 
 
5 
 
6 
 
7 

25 
 
21 
 
18 
 
18 
 
27 
 
45 
 
76 
 
123 

 
-4 
 
-3 
 
0 
 
9 
 
18 
 
31 
 
47 

 
 
1 
 
3 
 
9 
 
9 
 
13 
 
16 

 
 
 
2 
 
6 
 
0 
 
4 
 
3 

 

y being a polynomial of the third degree, ∆3𝑦 must be constant, that is the same. The 

sum of the third differences being 15, each entry under ∆3𝑦 must be 15/5. That is 3. 

Thus the four entries under ∆3𝑦 are in error which can be written as, 

3 − 1, 3 − 3 −1 , 3 + 3 −1 , 3 − (−1) 

Take 𝜀 = −1, we find that the entry corresponding to 𝑥 = 3 is in error. 
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∴ 𝑦 + 𝜀 = 18 

Thus the true value of y = 18 - 𝜀 = 18 – (-1) = 19. 

 

Example 2: Using the method of separation of symbols, prove that 

 𝑢0 +
𝑢1𝑥

1!
+

𝑢2𝑥2

2!
+ ⋯ = 𝑒𝑥  𝑢0 + 𝑥∆𝑢0 +

𝑥2

2!
∆2𝑢0 +

𝑥3

3!
∆3𝑢0 + ⋯  

Solution:  

𝑢0 +
𝑢1𝑥

1!
+

𝑢2𝑥2

2!
+ ⋯ = 𝑢0 +

𝑥

1!
 𝐸 𝑢0 +

𝑥2

2!
𝐸2𝑢0 +

𝑥3

3!
𝐸3𝑢0 + ⋯  

=  1 +
𝑥𝐸

1!
+

𝑥2𝐸2

2!
+

𝑥3𝐸3

3!
+ ⋯ 𝑢0 = 𝑒𝑥𝐸𝑢0  

= 𝑒𝑥(1+∆)𝑢0 = 𝑒𝑥 . 𝑒𝑥∆𝑢0  

= 𝑒𝑥  1 +
𝑥∆

1!
+

𝑥2∆2

2!
+

𝑥3∆3

3!
+ ⋯ 𝑢0  

= 𝑒𝑥  𝑢0 +
𝑥

1!
 ∆𝑢0 +

𝑥2

2!
∆2𝑢0 +

𝑥3

3!
∆3𝑢0 + ⋯   

 

Lets Sum up 

Finite difference methods are crucial in numerical analysis for approximating 

derivatives and solving differential equations. Here, we overview forward difference, 

backward difference, central difference, and error detection using a difference table. 

 Forward Difference 

Concept: 

 The forward difference method approximates the derivative of a function using the 

difference between function values at consecutive points. It is a simple and direct 

method often used in initial stages of numerical differentiation. 

Advantages: 

 Easy to implement. 

 Requires fewer function evaluations compared to other methods. 

Disadvantages: 

 Less accurate, especially for functions with high curvature. 

 Errors can propagate and amplify in successive calculations. 

 Backward Difference 

Concept: 

 The backward difference method uses the difference between the current and 

previous function values to approximate the derivative. It is particularly useful 

when data points are known from the past. 
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Advantages: 

 Similar simplicity to the forward difference. 

 Can be used effectively in backward-time stepping problems. 

Disadvantages: 

 Like forward difference, it is less accurate for highly curved functions. 

 May not handle initial boundary conditions well. 

 Central Difference 

Concept: 

 The central difference method averages the forward and backward differences to 

approximate the derivative. This method provides a more accurate estimate by 

considering the symmetric difference around the point of interest. 

Advantages: 

 Higher accuracy compared to forward and backward differences. 

 Better error properties, especially for smooth functions. 

Disadvantages: 

 Requires more function evaluations. 

 May not be applicable at the boundaries of the data set. 

 Error Detection Using Difference Table 

Concept: 

 A difference table helps detect errors in numerical differentiation and interpolation. 

By examining the higher-order differences, one can identify inconsistencies and 

potential errors in the data or the numerical method. 

Advantages: 

 Provides a systematic way to check for errors. 

 Helps in identifying trends and patterns in data. 

Disadvantages: 

 Construction of the table can be time-consuming for large data sets. 

 Requires careful interpretation to diagnose errors accurately. 

Conclusion 

Finite difference methods, including forward, backward, and central differences, are 

essential tools in numerical analysis for approximating derivatives. Each method has 

its specific advantages and limitations, making them suitable for different types of 

problems. Error detection using a difference table adds a layer of robustness to 

numerical calculations, ensuring greater accuracy and reliability in results. 
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Understanding and applying these methods effectively is key to solving a wide range 

of numerical problems in science and engineering. 

 

Self Assessment Questions: 

1. Find the sixth term of the sequence 8, 12, 19, 29, 42, … 

2. Find f(x) from the table below. Also find f(7). 

X 0 1 2 3 4 5 6 

f(x) -1 3 19 53 111 199 323 

3. The following table gives the value of y which is a polynomial of degree five. It is 

known that 𝑓(3) is in error. Correct the error. 

X 0 1 2 3 4 5 6 

Y 1 2 33 254 1025 3126 7777 

4. Using the method of separation of symbols, prove that 𝑢1𝑥 + 𝑢2𝑥
2 + 𝑢3𝑥

3 + ⋯ =

𝑥

1−𝑥
𝑢1 +  

𝑥

1−𝑥
 

2

∆𝑢1 +  
𝑥

1−𝑥
 

3

∆2𝑢1 + ⋯ 

 

Answers for check-up your progress: 

1. 58, 2. f(x) = x3+3x2-1 3. ∆2𝑓 𝑥 = 37 8  7  𝑥 +
19

3
 

(6)

+ 2(36) 7  6  𝑥 +
19

3
 

(5)

  

4. 10   
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Unit – 4  

INTERPOLATIONS 

4.0 Introduction 

Interpolation is a method of deriving a simple function from the given discrete 

data set such that the function passes through the provided data points. This helps 

to determine the data points in between the given data ones. This method is always 

needed to compute the value of a function for an intermediate value of the 

independent function. In short, interpolation is a process of determining the unknown 

values that lie in between the known data points.  It is mostly used to predict the 

unknown values for any geographical related data points such as noise level, rainfall, 

elevation, and so on. 

 

4.1 Differences of Polynomial 

The nth differences of a polynomial of the nth degree are constant and all 

higher order differences are zero. Let the polynomial of the nth degree in x, be 

 𝑓 𝑥 = 𝑎𝑥𝑛 + 𝑏𝑥𝑛−1 + 𝑐𝑥𝑛−2 + ⋯ + 𝑘𝑥 + 𝑙 

∴ ∆ 𝑓 𝑥 = 𝑓 𝑥 + 𝑕 − 𝑓(𝑥) 

= 𝑎  𝑥 + 𝑕 𝑛 − 𝑥𝑛  + 𝑏  𝑥 + 𝑕 𝑛−1 − 𝑥𝑛−1 + ⋯ + 𝑘𝑕 

= 𝑎𝑛𝑕𝑥𝑛−1 + 𝑏′𝑥𝑛−2 + 𝑐′𝑥𝑛−3 + ⋯ + 𝑘′𝑥 + 𝑙′ 

Where 𝑏′ , 𝑐′ , … , 𝑙′ are the new constant coefficients. Thus the first differences of a 

polynomial of the nth degree is a polynomial of degree (n-1). 

Similarly, 

∴ ∆2 𝑓 𝑥 = ∆ 𝑓 𝑥 + 𝑕 − 𝑓 𝑥  = ∆𝑓 𝑥 + 𝑕 − ∆𝑓 𝑥   

= 𝑎𝑛𝑕  𝑥 + 𝑕 𝑛−1 − 𝑥𝑛−1 + 𝑏′  𝑥 + 𝑕 𝑛−2 − 𝑥𝑛−2 + ⋯ + 𝑘′𝑕  

= 𝑎𝑛 𝑛 − 1 𝑕2𝑥𝑛−2 + 𝑏′′ 𝑥𝑛−3 + 𝑐′′ 𝑥𝑛−4 + ⋯ + 𝑘′′ ,  

Therefore the second differences represent a polynomial of degree  𝑛 − 2 . 

Continuing this process, for the nth differences we get a polynomial of degree zero. 

That is 

∆𝑛  𝑓 𝑥 = 𝑎𝑛 𝑛 − 1  𝑛 − 2 … 1. 𝑕𝑛 = 𝑎𝑕𝑛𝑛! 

Which is a constant. Hence the (n+1)th and higher differences of a polynomial of nth 

degree will be zero. 

 



 40 

Example 1: Evaluate ∆10[(1 − 𝑎𝑥)(1 − 𝑏𝑥2)(1 − 𝑐𝑥3)(1 − 𝑑𝑥4)] 

Solution: 

∆10  1 − 𝑎𝑥  1 − 𝑏𝑥2  1 − 𝑐𝑥3  1 − 𝑑𝑥4  = ∆10[𝑎𝑏𝑐𝑑𝑥10 +   𝑥9 +   𝑥8 + ⋯ + 1] 

= 𝑎𝑏𝑐𝑑 ∆10 𝑥10 = 𝑎𝑏𝑐𝑑 (10 !) 

 

Example 2: Evaluate ∆10[ 1 − 𝑥  1 − 2𝑥2) 1 − 3𝑥3  1 − 4𝑥4   if h = 2. 

Solution: 

∆10[ 1 − 𝑥  1 − 2𝑥2) 1 − 3𝑥3  1 − 4𝑥4  = ∆10[24𝑥10 + 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑙𝑒𝑠𝑠𝑒𝑟 𝑑𝑒𝑔𝑟𝑒𝑒] 

= 24 10! 210 + 0 

= 24 10! 210 

Example 3: Find ∆3𝑓(𝑥) if 𝑓 𝑥 =  3𝑥 + 1  3𝑥 + 4  3𝑥 + 7 … (3𝑥 + 19) 

Solution: 

Given 𝑓 𝑥 =  3𝑥 + 1  3𝑥 + 4  3𝑥 + 7 … (3𝑥 + 19) contains 7 factors 

= 37  𝑥 +
1

3
  𝑥 +

4

3
 …  𝑥 +

19

3
   

= 37  𝑥 +
19

3
 

(7)

  

 ∆𝑓 𝑥 = 37  7  𝑥 +
19

3
 

(6)

 

∆2𝑓 𝑥 = 37   7  6  𝑥 +
19

3
 

(5)

  

∆3𝑓 𝑥 = 37   7 (6)(5)  𝑥 +
19

3
 

(4)

  

 

4.2 Interpolation 

Many times, data is given only at discrete points such as  ,, 00 yx  11, yx , ......,

 11,  nn yx ,  nn yx , .  So, how then does one find the value of y  at any other value of 

x   Well, a continuous function  xf  may be used to represent the 1n  data values 

with  xf  passing through the 1n  points (Figure 1).  Then one can find the value of 

y  at any other value of x .  This is called interpolation.  Of course, if x  falls outside 

the range of x  for which the data is given, it is no longer interpolation but instead is 

called extrapolation.   

 So what kind of function  xf  should one choose.  A polynomial is a common 

choice for an interpolating function because polynomials are easy to  
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(A) evaluate, 

(B) differentiate, and 

(C) integrate, 

relative to other choices such as a trigonometric and exponential series. 

 

4.3 Newton forward and Newton Backward differences: 

The Newton’s forward interpolation formula is  

2 3

0 0 0 0 0

( 1) ( 1)( 2)
( ) .....

2! 3!

n n n n n
y x nh y n y y y

  
          

The Newton’s backward interpolation formula is  

2

0 0 0 0

( 1)
( ) .....

2!


      

n n
y x nh y n y y  

Example 1: From the data given below, find the number of students whose weight is 

between 60 to 70 

Weight 0-40 40-60 60-80 80-100 100-120 

No of Students 250 120 100 70 50 

Solution: 

    x 

Weight 

    Y 

No of Students 

y  2 y  3 y  4 y  

 

Below 40 

 

Below 60 

 

Below 80 

 

Below 100 

 

Below 120 

 

250 

 

370 

 

470 

 

540 

 

590 

 

 

120 

 

100 

 

70 

 

50 

 

 

 

-20 

 

-30 

 

-20 

 

 

 

 

-10 

 

10 

 

 

 

 

 

 

20 

 
 

  
  

 
   

 

    

0

2

0 0 0

70 40
1.5

20

1
70 .......

2!

1.5 1.5 0.5 0.5 0.5
          =250+ 1.5 120 20 10

2 6

1.5 0.5 0.5 1.5
            

24

         =424

x x
u

h

u u
y y u y y

 
  


     

   

 

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 Number of students whose weight is between    60 and 70    = y(70) – y(60) = 424 

– 370 = 54 

 

Example 2: A function f(x) is given by the following table. Find f(0.2) by a suitable 

formula. 

x 0 1 2 3 4 5 6 

F(x) 176 185 194 203 212 220 229 

 

Solution: 

The difference table is follows:- 

x y = f(x) 
1 y0 

2 y0 
3 y0 

4 y0 
5 y0 

6 y0 

0 176       

1 185 9      

2 194 9 0     

3 203 9 0 0    

4 212 9 0 0 0   

5 220 8 -1 -1 -1 -1  

6 229 9 1 2 3 4 5 

  

Here x0 = 0, h = 1, y0 = 176 = f(x) 

 We have to find the value of f (0.2). By Newton’s forward interpolation formula 

we have  

0 0 0 0

( 1)
( ) ........

2!

(0.2) ?

n n
f x nh y n y y

f


      



 

 x0 + nh = 0.2 

 0 + n = 0.2   n = 0.2  

 

(0.2)(0.2 1)
(0.2) 176 (0.2) 9  0

2

           176 1.8

           177.8

f


  

 



 

 

Example 3. From the given table compute the value of sin 38. 

 

 
x 0 10 20 30 40 

Sin x 0 0.17365 0.34202 0.5 0.64276 
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Solution: 

 As we have to determine the value of y = sin x near the lower end, we apply 

Newton’s backward interpolation formula. 

 The difference table is as given below.  

 

 

  

 

 

 

 

 

 

 

 

 

 

Here x0 = 40, h = 0.64279, h = 10 

 Newton’s backward differences formula 

2

0 0 0 0

( 1)
( ) ....

2!

(38)

n n
y x nh y n y y

y


      



 

 

0

( 0.2) ( 0.2 1)
 (38) 0.64279 ( 0.2) (0.14279)   ( 0.01519)

2!

                  

38        40 (10) 38        0.2

( 0.2) ( 0.2 1) ( 0.2 2)
 ( 0.0048)   

3!

           0.64279 0.028558

y

x nh n n

neglible term

  
    

     

    
  

  0.0012152 0.0002304

           0.61566

 



 

 

Example 4. In an examination the number of candidates who obtained marks 

between certain limits were as follows:- 

Marks 30 – 40  40 – 50 50 – 60 60 – 70  70 – 80 

No. of Students  31 42 51 35 31 

Find the number at candidate whose scores lie between 45 and 50.  

x0 y(x) = Sin x0 y 
2

y 
3

y 
4

y 

0 

 

0     

10 

 

0.17365 0.17365    

20 0.34202 0.16837 - 

0.00528 

  

30 0.5000 0.15798 - 

0.01039 

- 

0.00511 

 

40 0.64279 0.14279 - 

0.01519 

- 

0.0048 

0.00031 

X0 Y0 y0 
2y0 

3y0 
4y0 
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Solution: 

 First we construct a cumulative frequency table for the given table.  

       

. .              31 73  124  159  190

Upper limits 40 50 60 70 80

C F
 

The difference table is  

 

 

 

 

 

 

 

We have x0 = 40, x = 45, h = 10 

 0 45 40
0.5

10

x x
U

h

 
    

y0 = 73,  y0 = 42,  2y0 = 9,  3y0 = - 25,  4y0 = 37 

From Newton’s forward interpolation formula  

( 1) ( 1) ( 2)2 3( )
0 0 0 02! 3!

( 1) ( 2) ( 3) 4                     ......
04!

U U U U U
f x y U y y y

U U U U
y

  
      

  
  

 

(0.5) ( 0.5) (0.5) (0.5 1) (0.5 2)
(45) 31 (0.5) 42  (9)   ( 25)

2! 6

(0.5) ( 0.5) ( 1.5) ( 2.5)
                                 (37)

24

f
  

     

  
   

= 47.8673 = 48 approximately. 

The number of students who obtained marks less than 45 = 48, and the number of 

students who scored marks between 45 and 50 = 73 – 48 = 25. 

 

Example 5:  Use Newton’s forward interpolation and find value of sin 52 from the 

following data.   

X 45 50 55 60 

Y=sinx 0.7071 0.7660 0.8192 0.8660 

 

Solution:  

x y y 
2

y 
3

y 
4

y 

40 31     

50 73 42    

60 124 51 9   

70 159 35 -16 - 25  

80 190 31 - 4 12 37 
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The difference table  

X Sin x y 
2y 

3y 

45 
 

50 
 

55 
 

60 

0.7071 
 

0.7660 
 

0.8192 
 

0.8660 

 
0.0589 

 
0.0532 

 
0.0462 

 

 
 

-0.0057 
 

-0.0064 

 
 
 

-0.0007 

 

We have x0 = 45, x1 = 52, y0= 0.7071, y0 = 0.0589, 2y0 = -0.0057, 3y0 = -0.0007 

 0x x 52 45
u 1.4

h 5

  
  


 

Newton’s formula  

    

   
  

 

   
 

2 3

0 0 0 0

u u 1 u u 1 u 2
y u u y y y .....

2! 3!

1.4 1.4 1
f 52 0.7071 1.4 0.0589 0.0057

2

1.4 1.4 1 1.4 2
                                 + 0.0007

3!

         =0.7071+0.8246-0.001596+0.000392

sin52 0.7880032

  
       


   

 


   

 

Example 6:  Write the polynomial to calculate the value of x when? 

X 3 5 7 9 

Y 6 24 58 108 

Solution:  

X Y y 
2y 

3y 

3 
 

5 
 

3 
 

9 

6 
 

24 
 

58 
 

108 

 
18 

 
34 

 
50 

 

 
 

16 
 

16 

 
 
 

0 

0x nx x

x 3
3 n2 x;  2n x 3;     n

2

 


    
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 
 

   

 

2

0 0 0 0

2

n n 1
y x nx y n y y .....

2!

x 3 x 3
1

x 3 2 2
y x 6 18 16

2 2

y x 2x 3x 9


      

   
         

 

  
 

 

4.4 Central Difference Interpolation formula 

In the preceding sections, we derived Newton’s forward and backward 

interpolation formula which are applicable for interpolation near the beginning and 

end of tabulated values. Now we shall develop central difference formula which are 

best suited for interpolation near the middle of the table. 

 

4.4.1 Gauss Forward interpolation Formula 

By using Newton’s forward interpolation formula, we can derive the following 

Gauss forward interpolation formula, 

𝑦𝑝 = 𝑦0 + 𝑝∆𝑦0 +
𝑝(𝑝 − 1)

2!
∆2𝑦−1 +

(𝑝 + 1)𝑝(𝑝 − 1)

3!
∆3𝑦−1

+
(𝑝 + 1)𝑝(𝑝 − 1)(𝑝 + 2)

4!
∆4𝑦−2 + ⋯ 

4.4.2 Gauss Backward interpolation Formula 

By using Newton’s backward interpolation formula, we can derive the 

following Gauss backward interpolation formula, 

𝑦𝑝 = 𝑦0 + 𝑝∆𝑦−1 +
𝑝(𝑝 + 1)

2!
∆2𝑦−1 +

(𝑝 + 1)𝑝(𝑝 − 1)

3!
∆3𝑦−2

+
(𝑝 + 1)𝑝(𝑝 − 1)(𝑝 + 2)

4!
∆4𝑦−2 + ⋯ 

4.4.3 Stirling’s Formula 

The mean of Gauss forward interpolation formula and Gauss backward 

interpolation formula is  

𝑦𝑝 = 𝑦0 + 𝑝  
∆𝑦0 + ∆𝑦−1

2
 +

𝑝2

2!
∆2𝑦−1 +

𝑝(𝑝2 − 1)

3!
∗   

∆3𝑦−1 + ∆3𝑦−2

2
 

+
𝑝2 𝑝2 − 1 

4!
∆4𝑦−2 + ⋯ 
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4.4.4 Bessel’s Formula 

From the Gauss forward interpolation formula, we can derive the Bessel’s 

formula is given by 

𝑦𝑝 = 𝑦0 + 𝑝∆𝑦0 +
𝑝(𝑝 − 1)

2!

∆2𝑦−1 + ∆2𝑦0

2
+

 𝑝 −
1

2
 𝑝 (𝑝 − 1)

3!
∆3𝑦−1

+
(𝑝 + 1)𝑝(𝑝 − 1)(𝑝 + 2)

4!
 
∆4𝑦−2 + ∆4𝑦−1

2
 … 

4.4.5 Everett’s Formula 

From the Gauss forward interpolation formula, we can derive the Everett’s 

formula is given by 

𝑦𝑝 = 𝑞𝑦0 +
𝑞(𝑞2 − 12)

3!
∆2𝑦−1 +

𝑞(𝑞2 − 12)(𝑞2 − 22)

5!
∆4𝑦−2 + ⋯ + 𝑝𝑦1

+
𝑝 𝑝2 − 12 

3!
∆2𝑦0 +  

𝑝 𝑝2 − 12  𝑝2 − 22 

5!
∆4𝑦−1 + ⋯  

Where p = 1 – q 

There is a close relationship between Bessel’s formula and Everett’s formula and 

one can be deduced from the other by suitable rearrangements. It is also interesting 

to observe that Bessel’s formula truncated after third differences is Everett’s formula 

truncated after second differences. 

 

Example 1: Find 𝑓 22  from the Gauss forward formula 

X 20 25 30 35 40 45 

F(x) 354 332 291 260 231 204 

 

Solution: 

Taking 𝑥0 = 25, 𝑕 = 5, we have to find the value of f(x) for x = 22.  

That is for 𝑝 =
𝑥−𝑥0

𝑕
=

22−25

5
= −0.6 

The difference table is a follows 
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x    p f(x) ( )f x   2 f x

 

 3 f x

 

 4 f x  ∆5𝑓(𝑥) 

20 
 
25 
 
30 
 
35 
 
40 
 
45 

-1 
 
0 
 
1 
 
2 
 
3 
 
4 

354 
 
332 
 
291 
 
260 
 
231 
 
204 

 
-22 
 
-41 
 
-31 
 
-29 
 
-27 

 
 
-19 
 
10 
 
2 
 
2 

 
 
 
29 
 
-8 
 
0 
 

 
 
 
 
-37 
 
8 

 
 
 
 
 
45 

 

Gauss forward formula is 

𝑦𝑝 = 𝑦0 + 𝑝∆𝑦0 +
𝑝(𝑝 − 1)

2!
∆2𝑦−1 +

(𝑝 + 1)𝑝(𝑝 − 1)

3!
∆3𝑦−1

+
(𝑝 + 1)𝑝(𝑝 − 1)(𝑝 + 2)

4!
∆4𝑦−2 + ⋯ 

∴ 𝑓 22 = 332 +  0.6  −41 +
 −0.6  −0.6−1 

2!
 −19 + ⋯  

= 332 + 24.6 − 9.12 − 0.512 + 1.5392 − 0.5241  

Hence 𝑓 22 = 347.983 

 

Example 2: Using Gauss backward difference formula, find 𝑓(8) from the following 

table 

X 0 5 10 15 20 25 

f(x) 7 11 14 18 24 32 

 

Solution: 

Taking 𝑥0 = 10, 𝑕 = 5, we have to find the value of y  for x = 8.  

That is for 𝑝 =
𝑥−𝑥0

𝑕
=

8−10

5
= −0.4 
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The difference table is a follows 

x    p f(x) ( )f x   2 f x

 

 3 f x

 

 4 f x  

0 
 
5 
 
10 
 
15 
 
20 
 
25 

-2 
 
-1 
 
0 
 
1 
 
2 
 
3 

7 
 
11 
 
14 
 
18 
 
24 
 
32 

 
4 
 
3 
 
4 
 
6 
 
8 

 
 
-1 
 
1 
 
2 
 
2 

 
 
 
2 
 
1 
 
0 
 

 
 
 
 
-1 
 
-1 

 

𝑦𝑝 = 𝑦0 + 𝑝∆𝑦−1 +
𝑝(𝑝 + 1)

2!
∆2𝑦−1 +

(𝑝 + 1)𝑝(𝑝 − 1)

3!
∆3𝑦−2 +

(𝑝 + 1)𝑝(𝑝 − 1)(𝑝 + 2)

4!
∆4𝑦−2 + ⋯ 

𝑓 8 = 14 +  −0.4  3 +
 −0.4+1  −0.4 

2!
 1 + ⋯ = 14 − 1.2 − 0.12 + 0.112 + 0.034  

Hence 𝑓 8 = 12.826 

 

Example 3: Given 

𝜃 0 5 10 15 20 25 30 

tan 𝜃 0 0.0875 0.1763 0.2679 0.3640 0.4663 0.5774 

Using Stirling’s formula, estimate the value of tan 16°. 

Solution: 

Taking the origin at 𝜃° = 15°, 𝑕 = 5° and 𝑝 =
𝜃−15

5
 

We have the following central difference table: 

p 𝑓 𝑥 = tan 𝜃 ( )f x   2 f x   3 f x   4 f x  

-3 
 
-2 
 
-1 
 
0 
 
1 
 
2 
 
3 

0 
 
0.0875 
 
0.1763 
 
0.2679 
 
0.3640 
 
0.4663 
 
0.5774 

 
0.0875 
 
0.0888 
 
0.0916 
 
0.0961 
 
0.1023 
 
0.1111 

 
 
0.013 
 
0.0028 
 
0.0045 
 
0.0062 
 
0.0088 

 
 
 
0.0015 
 
0.0017 
 
0.0017 
 
0.0026 
 

 
 
 
 
0.0002 
 
0.0000 
 
0.0009 
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At 𝜃° = 16°, 𝑕 = 5° and 𝑝 =
16−15

5
= 0.2 

By stirling’s formula 

𝑦𝑝 = 𝑦0 + 𝑝  
∆𝑦0 + ∆𝑦−1

2
 +

𝑝2

2!
∆2𝑦−1 +

𝑝(𝑝2 − 1)

3!
∗   

∆3𝑦−1 + ∆3𝑦−2

2
 

+
𝑝2 𝑝2 − 1 

4!
∆4𝑦−2 + ⋯ 

𝑦0.2 = 0.2679 +  0.2  
0.0916+0.0961

2
 +

 0.2 2

2!
  0.0045 + ⋯  

= 0.2679 + 0.01877 + 0.00009 + ⋯  

Hence tan 16° = 0.28676. 

 

Example 4: Apply Bessel’s formula to find the value of 𝑓(27.5) from the table 

X 25 26 27 28 29 30 

F(x) 4 3.846 3.704 3.571 3.448 3.333 

Solution: 

Taking the origin at 𝑥0 = 27, 𝑕 = 1, we have 𝑝 = 𝑥 − 27 

The central difference table is  

x    p f(x) ( )f x   2 f x

 

 3 f x

 

 4 f x  

25 
 
26 
 
27 
 
28 
 
29 
 
30 

-2 
 
-1 
 
0 
 
1 
 
2 
 
3 

4.000 
 
3.846 
 
3.704 
 
3.571 
 
3.448 
 
3.333 

 
- 0.154 
 
- 0.142 
 
-0.133 
 
-0.123 
 
-0.115 

 
 
0.012 
 
0.009 
 
0.010 
 
0.008 

 
 
 
-0.003 
 
-0.001 
 
-0.002 
 

 
 
 
 
0.004 
 
-0.001 

 

 

At 𝑥 = 27.5, 𝑝 = 0.5 (As p lies between ¼ and ¾ ) 

Bessel’s formula is 

𝑦𝑝 = 𝑦0 + 𝑝∆𝑦0 +
𝑝(𝑝 − 1)

2!

∆2𝑦−1 + ∆2𝑦0

2
+

 𝑝 −
1

2
 𝑝 (𝑝 − 1)

3!
∆3𝑦−1

+
(𝑝 + 1)𝑝(𝑝 − 1)(𝑝 + 2)

4!
 
∆4𝑦−2 + ∆4𝑦−1

2
 … 
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Since p = 0.5, we have 

𝑦𝑝 = 3.704 −
 0.5 (0.5−1)

2
  

0.009+0.010

2
 + 0 + ⋯  

= 3.704 − 0.11875 − 0.00006  

Hence 𝑓 27.5 = 3.585 

 

Example 5: Using Everett’s formula, evaluate 𝑓 30  𝑖𝑓 𝑓 20 = 2854, 𝑓 28 = 3162,

𝑓 36 = 7088, 𝑓 44 = 7984 . 

Solution: 

Taking the origin at 𝑥0 = 28, 𝑕 = 8, we have 𝑝 =
𝑥−28

8
 

The central difference table is  

x    p f(x) ( )f x   2 f x   3 f x  

20 
 
28 
 
36 
 
44 

-1 
 
0 
 
1 
 
2 

2854 
 
3162 
 
7088 
 
7984 

 
308 
 
3926 
 
896 
 

 
 
3618 
 
-3030 
 
 

 
 
 
-6648 
 
 

 

 

At 𝑥 = 30, 𝑝 =
30−28

8
= 0.25 and 𝑞 = 1 − 𝑝 = 0.75 

Everett’s formula is 

𝑦𝑝 = 𝑞𝑦0 +
𝑞(𝑞2 − 12)

3!
∆2𝑦−1 +

𝑞(𝑞2 − 12)(𝑞2 − 22)

5!
∆4𝑦−2 + ⋯ + 𝑝𝑦1

+
𝑝 𝑝2 − 12 

3!
∆2𝑦0 +  

𝑝 𝑝2 − 12  𝑝2 − 22 

5!
∆4𝑦−1 + ⋯ 

=  0.75  3162 +
 0.75 (0.752−1)

6
  3618 + ⋯ +  0.25  7080 +

 0.25 (0.252−1)

6
  −3030 + ⋯  

= 2371.5 − 351.75 + 1770 + 94.69  

Hence 𝑓 30 = 3884.4 

 

Lets Sum Up 

 Newton's Forward Difference Formula 

Concept: 

Used for polynomial interpolation, this method calculates the interpolated value at a 

point by utilizing the forward differences of function values at equally spaced points. 
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Advantages: 

 Simplicity: Easy to understand and implement. 

 Good for Smooth Functions: Works well with smooth and continuous 

functions. 

 Efficient for Interpolation: Effective when predicting values near the start of the 

dataset. 

Disadvantages: 

 Oscillation: The polynomial can oscillate for larger intervals, leading to 

inaccuracies. 

 Recalculation Needed: Forward differences must be recalculated for new data 

points. 

 Newton's Backward Difference Formula 

Concept: 

Similar to the forward method, but it uses backward differences. This approach 

estimates values using known values at points before the desired point. 

Advantages: 

 Extrapolation: More accurate when estimating points close to the last data 

point. 

 Equally Spaced Data: Works well with uniformly spaced data points. 

Disadvantages: 

 Limited to Endpoints: Less efficient for interpolation at the beginning of the 

dataset. 

 Oscillation: Same oscillation issue as the forward method with larger intervals. 

 Gauss Central Difference Formula 

Concept: 

This method employs central differences, taking points both before and after the 

target to estimate values, providing a more balanced interpolation. 

Advantages: 

 Higher Accuracy: Generally yields better results than forward or backward 

methods for centrally located points. 

 Stable: Reduces error in polynomial approximation. 

Disadvantages: 

 Symmetrical Data Required: Requires data points to be evenly spaced around 

the interpolation point. 
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 Complex Calculations: More involved calculations compared to 

forward/backward methods. 

 Stirling's Formula 

Concept: 

A specific case of the central difference method tailored for evenly spaced data, 

particularly effective for interpolation at midpoints. 

Advantages: 

 Balanced Approach: Good for midpoints in datasets. 

 Efficiency: Less computationally intensive compared to higher-degree 

polynomial interpolations. 

Disadvantages: 

 Odd Number of Points: Requires an odd number of data points for optimal 

performance. 

 Not Suitable for Unequal Spacing: Less effective with unevenly spaced data. 

 Everett's Formula 

Concept: 

This formula is designed for interpolation when data points are not uniformly spaced, 

focusing on local approximations. 

Advantages: 

 Flexibility: Can handle non-uniformly spaced datasets effectively. 

 Local Approximation: Provides localized interpolation based on surrounding 

data points. 

Disadvantages: 

 Complexity: More complex to derive and implement. 

 Potential Accuracy Issues: May be less accurate than other methods for well-

behaved datasets. 

 Bessel's Formula 

Concept: 

Bessel’s formula is used for interpolation and extrapolation, particularly effective for 

equally spaced datasets. 

Advantages: 

 High Accuracy: Performs well with periodic and well-behaved functions. 

 Good for Interpolation: Suitable for estimating values not present in the 

dataset. 
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Disadvantages: 

 Uniform Spacing Required: Less effective for non-uniform data distributions. 

 Computational Resources: Can be more resource-intensive due to 

complexity. 

Conclusion 

In conclusion, each interpolation method has its unique strengths and weaknesses, 

making them suitable for different scenarios: 

 Newton's Forward and Backward methods are ideal for simple, evenly spaced 

data, with forward suitable for starting estimates and backward for endpoints. 

 Gauss Central offers better accuracy, especially for central points, but 

requires symmetric spacing. 

 Stirling’s Formula is efficient for midpoint interpolation with evenly spaced 

data. 

 Everett’s Formula provides flexibility for unevenly spaced datasets but at the 

cost of complexity. 

 Bessel’s Formula excels with periodic functions but requires uniform data. 

Choosing the right method depends on the nature of your data, the desired 

accuracy, and the specific interpolation requirements. For smooth functions with 

evenly spaced points, Newton’s methods and Stirling’s are effective; for central 

estimates, Gauss and Bessel shine; while Everett’s is beneficial for irregular 

datasets. 

 

 

Self Assessment Questions: 

1. Evaluate: ∆10[ 1 − 𝑥  1 − 2𝑥) 1 − 3𝑥 …  1 − 10𝑥   if h = 1. 

2. Find ∆2𝑓(𝑥) if 𝑓 𝑥 = 𝑥 3𝑥 + 1  3𝑥 + 4  3𝑥 + 7 … (3𝑥 + 19) 

3. Find the values of y at x=21 and x=28 from the following data by using 

Newton’s forward and backward formula 

X 20 23 26 29 

y 0.3420 0.3907 0.4384 0.4848 

 

4. Use Gauss’s forward formula to evaluate 𝑦30 , given that 𝑦21 = 18.4708,  

  𝑦25 = 17.8144,    𝑦29 = 17.1070, 𝑦33 = 16.3432 𝑎𝑛𝑑 𝑦37 = 15.5154  
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5. Interpolate by means of Gauss’s backward formula, the population of a town 
for the year 1974, given that  

Year 1939 1949 1959 1969 1979 1989 

Population (in thousands) 12 15 20 27 39 52 

6. Employ Stirling’s formula to compute 𝑦12.2 from the following table 

X 10 11 12 13 14 

Y  23967 28060 31788 35209 38368 

7. Apply Bessel’s formula to obtain 𝑦25 given 𝑦20 = 2854, 𝑦24 = 3162, 𝑦28 = 3544,

𝑦32 = 3992. 

8. Given the table 

X 310 320 330 340 350 360 

log x 2.49136 2.50515 2.51851 2.53148 2.54407 2.55630 

Find the value of log 337.5 by Everett’s formula. 
 

Answers: 

1.  10! 2 2. ∆2𝑓 𝑥 = 37 8  7  𝑥 +
19

3
 

(6)

+ 2(36) 7  6  𝑥 +
19

3
 

(5)

 , 3. 0.3583 & 

0.4695,   4. 16.9216   5. 32.532, 6. 0.32497, 7. 3250.875, 8. 2.5283 
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Unit 5  

INTERPOLATION AND APPROXIMATIONS 

 

5.0 Introduction 

Interpolation is a method of fitting the data points to represent the value of a 

function. It has a various number of applications in engineering and science, that are 

used to construct new data points within the range of a discrete data set of known 

data points or can be used for determining a formula of the function that will pass 

from the given set of points (x,y). 

 

5.1 Lagrange’s Interpolation 

Polynomial interpolation involves finding a polynomial of order n  that passes 

through the 1n  data points.  One of the methods used to find this polynomial is 

called the Lagrangian method of interpolation.  Other methods include Newton’s 

divided difference polynomial method and the direct method.   

The Lagrangian interpolating polynomial is given by 

 



n

i

iin xfxLxf
0

)()()(  

where n  in )(xfn  stands for the 
thn  order polynomial that approximates the function 

)(xfy   given at 1n  data points as        nnnn yxyxyxyx ,,,,......,,,, 111100  , and 

 

 




n

ij
j ji

j

i
xx

xx
xL

0

)(  

)(xLi  is a weighting function that includes a product of 1n  terms with terms of ij   

omitted.  The application of Lagrangian interpolation will be clarified using an 

example. 

 

 

 

 

 

https://byjus.com/maths/data-sets/
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Example 1: 

The upward velocity of a rocket is given as a function of time in Table 1. 

                                           Velocity as a function of time. 

t  (s) )(tv  (m/s) 

0 0 

10 227.04 

15 362.78 

20 517.35 

22.5 602.97 

30 901.67 

Determine the value of the velocity at 16t  seconds using a first order Lagrange 

polynomial.  

Solution 

For first order polynomial interpolation (also called linear interpolation), the velocity is 

given by 

 



1

0

)()()(
i

ii tvtLtv  

               )()()()( 1100 tvtLtvtL   

Since we want to find the velocity at 16t , and we are using a first order polynomial, 

we need to choose the two data points that are closest to 16t  that also bracket 

16t  to evaluate it.  The two points are 150 t  and 201 t . 

Then 

   78.362  ,15 00  tvt  

   35.517  ,20 11  tvt  

gives 

 

 




1

0
0 0

0 )(

j
j j

j

tt

tt
tL  

           
10

1

tt

tt




  

 

 




1

1
0 1

1 )(

j
j j

j

tt

tt
tL  



 58 

                  
01

0

tt

tt




  

Hence 

   )()()( 1

01

0
0

10

1 tv
tt

tt
tv

tt

tt
tv









  

                    2015    ),35.517(
1520

15
)78.362(

2015

20










 t

tt
 

 )35.517(
1520

1516
)78.362(

2015

2016
)16(









v  

                   )35.517(2.0)78.362(8.0   

                   m/s 69.393  

You can see that 8.0)(0 tL  and 2.0)(1 tL  are like weightages given to the 

velocities at 15t  and 20t  to calculate the velocity at 16t . 

5.2 Formula for Lagrange’s interpolation. 

 Let Y = f(x) be a function which assumes the values f(x0), f(x1) ….. f(xn) 

corresponding to the values x: x1, x1 …..xn. 

 

1 2
0

0 1 0 2 0

0 2
1

1 0 1 2 1

( )( )...( )
( ) ( )

( )( )...( )

( )( )...( )
                  ( ) .........

( )( )...( )

n

n

n

n

x x x x x x
Y f x f x

x x x x x x

x x x x x x
f x

x x x x x x

  
  

  

  


  

 

Example 1: Find the second degree polynomial fitting the following data.  

 
x 1 2 4

y 4 5 13
 

Solution:- 

 x0 = 1, x1 = 2, x2 = 4, y0 = 4, y1 =5,  y2 = 13 

By Lagrange’s formula 

 
( )( ) ( )( )( )( ) 0 2 0 11 2

( ) 0 1 2
( )( ) ( )( ) ( )( )0 1 0 2 1 0 1 2 2 0 2 0

x x x x x x x xx x x x
f x y y y

x x x x x x x x x x x x

    
  

     
 

 
2 2 2

( 2)( 4) ( 1)( 4) ( 1)( 2)
4 5 13

3 2 6

1
8 48 64 15 75 60 13 39 26

6

x x x x x x

x x x x x x

     
  



          
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2

2

1
6 12 30

6

2 5

x x

x x

    

    

 

Example 2: Using Lagrange’s interpolation formula, find the value of y 

corresponding to x = 10 from the following table.  

 

 

 

Solution:- 

 We have x0 = 5, x1 = 6, x2 = 9, x3 = 11 

     Y0 = 12, y1 = 13, y2 = 14, y3 = 16 

Using Lagrange’s interpolation formula, we have  

( ) ( ) ( ) ( ) ( ) ( )1 2 3 0 2 3
0 1

( ) ( ) ( ) ( ) ( ) ( )0 1 0 2 0 3 1 0 1 2 1 3

( )
x x x x x x x x x x x x

y y
x x x x x x x x x x x x

y f x
     


     

   

                

( )( )( ) ( )( )( )0 1 3 0 1 2
2 3

( )( )( ) ( )( )( )2 0 2 1 2 3 3 0 3 1 3 2

 

x x x x x x x x x x x x
y y

x x x x x x x x x x x x

     
 

       

Substitute 

(10 6) (10 9) (10 11) (10 5) (10 9) (10 11)

(5 6) (5 9) (5 11) (6 5) (6 9) (6 11)
(12) (13)(10)f

     


     
  

(10 5) (10 6) (10 11) (10 5) (10 6) (10 9)

(9 6) (9 6) (9 11) (11 5) (11 6) (11 9)
14 16

     
 

     
  

13 35 16 42
2

3 3 3 3
    

 

 

Example 3: Show that 
3 1 1

bcd a abcd

 
   
 

 

Solution: 

If f(x) = 1/x,   f(a) = 1/a 

f(a, b) = 

1 1

1 1

b

b a

a b a ab


 

    
 

 

f(a, b, c) 
   

1 1
, ,f b c f a b bc ab

c a c a

 
 

 
 

x 5 6 9 11 

f(x) 12 13 14 16 
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1

                   =
abc   

                           

   , , , ,
( , , , )

1 1

1bcd                  =
d-a

f b c d f a b c
f a b c d

d a

abc

abcd








 
 

 

5.3 Newton’s Divided Differences 

To illustrate this method, we will start with linear and quadratic interpolation, 

then, the general form of the Newton’s Divided Difference Polynomial method will be 

presented.   

 

Given ),,( 00 yx  ),,( 11 yx  fit a linear interpolant through the data.  Note taht )( 00 xfy   

and )( 11 xfy  , assuming a linear interpolant means: 

 

The first divided difference by ,  

 )(][ 00 xfxf   

The second divided difference by 

 
01

01
01

)()(
],[

xx

xfxf
xxf




   

And  the third divided difference by 

 
02

0112
012

],[],[
],,[

xx

xxfxxf
xxxf




  

          
02

01

01

12

12 )()()()(

xx

xx

xfxf

xx

xfxf












  

where ],[ 0xf ],,[ 01 xxf and ],,[ 012 xxxf  are called bracketed functions of their 

variables enclosed in square brackets. Then, We can write: 

 ...))(](,,[)](,[][)( 100120010  xxxxxxxfxxxxfxfxf  
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Example 1: Find the form of the function f(x) under suitable assumption from the 

following  

X 0 1 2 5 

f(x) 2 3 12 147 

 

Solution: 

The divided differences table is given below. 

x f(x) f(x) 
2f(x) 

3f(x) 

0 2    

1 3 
3 2

1
1 0





 

  

2 12 
12 3

9
2 1





 

9 1
4

2 0





 

 

5 147 
147 12

45
5 2





 

45 9
9

5 1





 

9 4
1

5 0





 

We have x0 = 0, f(x0 = 2, f(x0, x1) = 1, f(x0, x1, x2) = 4 , f(x0, x1, x2, x3) = 1  

The Newton’s divided difference interpolation formula is  

0 0 0 1 0 1 0 1 2

0 1 2 0 1 2 3

3 2

( ) ( ) ( ) ( , ) ( ) ( ) ( , , )

                    ( ) ( ) ( ) ( , , , )

        2 ( 0) 1 ( 0) ( 1) 4 ( 0) ( 1) ( 2) 1

        2

     

   

         

   

f x fx x x f x x x x x x f x x x

x x x x x x f x x x x

x x x x x x

x x x  
 

 Example 2: Find f(x) as a polynomial in x for the following data by Newton’s divided       

 difference formula 

X     : -4 -1 0  2 5 

f(x) : 1245 33 5 9 1335 

 Solution:  

The divided difference table is 

x    f(x) ( )f x   2 f x   3 f x   4 f x  

-4 
 
-1 
 
0 
 
2 
 
5 

1245 
 
33 
 
5 
 
9 
 
1335 

 
- 404 
 
- 28 
 
2 
 
442 

 
 
94 
 
10 
 
88 

 
 
 
-14 
 
13 
 

 
 
 
 
3 
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By Newton’s divided difference interpolation formula  

f(x)= 1245 + (x+4) (-404) + (x+4) (x+1) 94 + (x+4)  

        (x+1) x(-14) + (x+4) (x+1) x(x-2)3     = 3x4 + x3 – 14x+5 

 

Example 3:  

The following table gives same relation between steam pressure and temperature. 

find the pressure at temperature 372.10 

 

 

 

Solution: 

The divided difference table is 

 

T   P p  2 p  3P  
4 p  

361 
 
367 
 
378 
 
387 
 
399 

154.9 
 
167.0 
 
191.0 
 
212.5 
 
244.2 

 
2.016666 
 
2.18181818 
 
2.388889 
 
2.641667 

 
 
0.0097147 
 
0.0103535 
 
0.01203703 

 
 
 
0.000024 
 
0.000052 
 

 
 
 
 
0.00000073 

 

By Newton’s divided difference formula 

P(T=372.10) = 154.9 + (11.1)(2.016666) + (11.1)  

   (5.1) (0.009914) + (11.1) (5.1) (-5.9) (0.000024)  

   + (11.1) (5.1) (-5.9) (-14.9) (0.00000073)     = 177.8394819 

 

5.4 Inverse Lagrange’s interpolation: 

By using Lagrange’s method we can find the value of x when f(x) is given. The 

inverse Lagrange’s formula is given by, 

 

1 2
0

0 1 0 2 0

0 2
1

1 0 1 2 1

( )( )...( )

( )( )...( )

( )( )...( )
      .........

( )( )...( )

n

n

n

n

y y y y y y
x x

y y y y y y

y y y y y y
x

y y y y y y

  
 

  

  


  

 

 

T 3610 3670 3780 3870 3990 

P 154.9 167.9 191.0 212.5 244.2 
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Example 1: Find the value of x when y = 85, using Lagrange’s formula from the 

following table.  

 

 

 

Solution:- 

 x0 = 2, x1 = 5, x2 = 8, x3 = 14 

 y0 = 94.8, y1 = 87.9, y2 = 81.3, y3 = 68.7 

  y = 85 

We know that the Lagrange’s inverse formula is  

( ) ( ) ( ) ( ) ( ) ( )1 2 3 0 2 3
0 1

( ) ( ) ( ) ( ) ( ) ( )0 1 0 2 0 3 1 0 1 2 1 3

y y y y y y y y y y y y

y y y y y y y y y y y y
x xx

     


     
  

        
( )( )( ) ( )( )( )0 1 3 0 1 2

2 3
( )( )( ) ( )( )( )2 0 2 1 2 3 3 0 3 1 3 2

y y y y y y y y y y y y

y y y y y y y y y y y y
x x

     
 

     
 

Substituting the above values we get, 

(85 87.9) (85 81.3) (85 68.7)
2

(94.8 87.9) (94.8 81.3) (94.8 68.7)

(85 94.8) (85 81.3) (85 68.7)
             .5

(87.9 94.8) (87.9 81.3) (87.9 68.7)

x
  

 
  

  


  

 

(85 94.8) (85 87.9) (85 68.7)
             (8)

(81.3 94.8) (81.3 87.9) (81.3 68.7)

(85 94.8) (85 87.9) (85 68.7)
             14

(68.7 94.8) (68.7 87.9) (68.7 81.3)

  


  

  


  

 

 x = 6.5928. 

 

Lets Sum Up 

 Lagrange's Interpolation Formula 

Concept: 

Lagrange's interpolation is a polynomial interpolation method that constructs a 

polynomial that passes through a given set of data points. The formula is based on 

the concept of constructing basis polynomials for each data point. 

Advantages: 

 Direct Method: Provides an explicit formula for interpolation without needing to 

calculate divided differences. 

X 2 5 8 14 

Y 94.8 87.9 81.3 68.7 
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 Easy to Understand: Intuitive and straightforward conceptually. 

 Global Approximation: The polynomial constructed passes exactly through all 

given points. 

Disadvantages: 

 Computationally Intensive: Requires O(n2)O(n^2)O(n2) operations, which can 

be inefficient for large datasets. 

 Numerical Instability: Large values of nnn can lead to Runge's phenomenon, 

where oscillations occur between points. 

 Higher Degree Polynomial: The resulting polynomial can be of degree nnn, 

which may not be necessary for interpolation. 

 Newton's Divided Difference Formula 

Concept: 

Newton's divided difference formula builds an interpolating polynomial incrementally 

using divided differences, which are calculated based on the data points. 

Advantages: 

 Incremental Construction: New points can be added easily without 

recalculating the entire polynomial. 

 Stable for Larger Datasets: Generally more stable than Lagrange for larger 

datasets. 

 Lower Degree Polynomials: Can achieve the same accuracy with lower 

degree polynomials. 

Disadvantages: 

 Complexity in Calculation: Requires understanding of divided differences, 

which can be more complex to grasp. 

 Dependence on Order of Points: The order in which points are arranged can 

affect the results. 

 Inverse Lagrange's Interpolation Formula 

Concept: 

This formula is used when you want to find the value of an independent variable xxx 

corresponding to a given dependent variable yyy. It essentially reverses the 

traditional Lagrange interpolation. 

Advantages: 

 Useful for Mapping: Allows for the direct calculation of the independent 

variable given the dependent variable. 
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 Similar Benefits to Lagrange: Retains the benefits of Lagrange interpolation, 

including exactness at data points. 

Disadvantages: 

 Computational Complexity: Still involves calculating basis polynomials, which 

can be computationally intensive. 

 Numerical Instability: Similar to Lagrange, can suffer from instability and 

oscillation issues. 

Conclusion 

In summary, each interpolation method serves different purposes and has unique 

characteristics: 

 Lagrange's Interpolation is straightforward and intuitive, making it suitable for 

small datasets, but can become computationally intensive and unstable for 

larger sets. 

 Newton's Divided Difference Formula is efficient for larger datasets, allowing 

for easy updates and typically more stable results. It requires a more complex 

understanding of divided differences. 

 Inverse Lagrange's Interpolation is valuable for scenarios where you need to 

find the independent variable given a dependent value, retaining the strengths 

of Lagrange while introducing additional complexity. 

When selecting an interpolation method, consider the size of your dataset, the nature 

of your data (equally or unequally spaced), and whether you require direct or inverse 

interpolation. Each method has its best-fit applications based on these factors. 
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Self Assessment Questions: 

1. Find the polynomial 𝑓(𝑥) by using Lagrange’s formula and hence find 𝑓(3) for  

x 0 1 2 5 

f(x) 2 3 12 147 

2. Find the missing term in the following table using interpolation 

x 0 1 2 3 4 

y 1 3 9 --- 81 

3. Given the values 

X 5 7 11 13 17 

F(x) 150 392 1452 2366 5202 

Evaluate f(9), using Newton’s divided difference formula. 

4. The following table gives the values of x and y 

X 1.2 2.1 2.8 4.1 4.9 6.2 

Y 4.2 6.8 9.8 13.4 15.5 19.6 

Find the value of x corresponding to y = 12, using inverse Lagrange’s method. 

 

Answers 

1. 35,  2.  31,  3.  810,  4. 3.55 
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